Menu

Blog

Archive for the ‘particle physics’ category: Page 29

Aug 27, 2024

Using machine learning to speed up simulations of irregularly shaped particles

Posted by in categories: particle physics, robotics/AI

Simulating particles is a relatively simple task when those particles are spherical. In the real world, however, most particles are not perfect spheres, but take on irregular and varying shapes and sizes. Simulating these particles becomes a much more challenging and time-consuming task.

Aug 27, 2024

Physicists ease path to entanglement for quantum sensing

Posted by in categories: particle physics, quantum physics

Nothing in science can be achieved or understood without measurement. Today, thanks to advances in quantum sensing, scientists can measure things that were once impossible to even imagine: vibrations of atoms, properties of individual photons, fluctuations associated with gravitational waves.

Aug 26, 2024

New bosons: CERN’s anomalies could bring us closer to novel particles

Posted by in category: particle physics

A groundbreaking study explores anomalies in particle physics experiments, suggesting the existence of new bosons.

Aug 26, 2024

Massive Solar Wind Disturbance caused Earth’s Magnetosphere to Fly Without its Usual Tail

Posted by in categories: particle physics, space, sustainability

Like a supersonic jet being blasted with high-speed winds, Earth is constantly being bombarded by a stream of charged particles from the sun known as solar wind.

Just like wind around a jet or water around a boat, these solar wind streams curve around Earth’s magnetic field, or magnetosphere, forming on the sunward side of the magnetosphere a front called a bow shock and stretching it into a wind sock shape with a long tail on the nightside.

Dramatic changes to the solar wind alter the structure and dynamics of the magnetosphere. An example of such changes provides a glimpse into the behavior of other bodies in space, such as Jupiter’s moons and extrasolar planets.

Aug 26, 2024

Heaviest antimatter observation yet will fine-tune numbers for dark matter search

Posted by in categories: cosmology, particle physics

In experiments at the Brookhaven National Lab in the US, an international team of physicists has detected the heaviest “anti-nuclei” ever seen. The tiny, short-lived objects are composed of exotic antimatter particles.

Aug 25, 2024

Advances in Two-dimensional (2D) Inorganic Chiral Materials and 2D Organic-inorganic Hybrid Chiral Materials

Posted by in categories: chemistry, computing, particle physics

Recently, two-dimensional (2D) materials have gained immense attention, as they are promising in various application fields, such as energy storage, thermal management, photodetectors, catalysis, field-effect transistors, and photovoltaic modules. These merits of 2D materials are attributed to their unique structure and properties. Chirality is an intrinsic property of a substance, which means the substance can not overlap with its mirror image. Significant progress has been made in chiral science, for chirality uniquely influences a chiral substance’s performance. With the rapid development of chiral science, it became unveiled that chirality not only exists in chiral organic molecules but can also be induced in 2D inorganic materials and 2D organic-inorganic hybrid materials by breaking the chiral symmetry within their framework to form 2D chiral materials. Compared with 2D materials that do not have chirality, these 2D inorganic chiral materials and 2D organic-inorganic hybrid chiral materials exhibit innovative performance due to chiral symmetry breaking. Nevertheless, at present, only a fraction of work is available which comprehensively sums up the progress of these promising 2D chiral materials. Thus, given their high potential, it is urgent to summarize these newly developed 2D chiral materials comprehensively. In the current study, to feature and highlight their major significance, the recent progress of 2D inorganic materials and 2D organic-inorganic hybrid materials from their chemical composition and categories, application potential associated with their unique properties, and present synthesis strategies to fabricate them along with discussion concerning the development challenges and their bright future were reviewed. This review is anticipated to be instructive and provide a high understanding of advanced functional 2D materials with chirality.

Keywords: Chirality, two-dimensional, inorganic, organic-inorganic hybrid, asymmetric, enantioselective, chiral-induced spin selectivity (CISS), photoelectronic, spintronics.

Aug 25, 2024

Quantum entanglement: A simple way to fully grasp this ‘impossible’ concept

Posted by in categories: mathematics, particle physics, quantum physics

Measurement in quantum mechanics presents unique challenges. Observing one particle in an entangled pair determines the states of both, leading to critical inquiries: What constitutes a ‘measurement,’ and how does it influence our understanding of reality?

The complex mathematics underpinning quantum mechanics — incorporating concepts like Hilbert spaces, wave functions, and operators — can be intimidating, rendering entanglement less accessible to many.

Simply put, quantum entanglement is just too complicated for most people to fully understand. It defies classical intuitions, involves sophisticated mathematics, and urges us to reevaluate our understanding of reality.

Aug 24, 2024

Team develops method for control over single-molecule photoswitching

Posted by in categories: chemistry, nanotechnology, particle physics

The new research centers on the use of LSPs to achieve atomic-level control of chemical reactions. A team has successfully extended LSP functionality to semiconductor platforms. By using a plasmon-resonant tip in a low-temperature scanning tunneling microscope, they enabled the reversible lift-up and drop-down of single organic molecules on a silicon surface.

The LSP at the tip induces breaking and forming specific chemical bonds between the molecule and silicon, resulting in the reversible switching. The switching rate can be tuned by the tip position with exceptional precision down to 0.01 nanometer. This precise manipulation allows for reversible changes between two different molecular configurations.

An additional key aspect of this breakthrough is the tunability of the optoelectronic function through molecular modification. The team confirmed that photoswitching is inhibited for another organic molecule, in which only one oxygen atom not bonding to silicon is substituted for a nitrogen atom. This chemical tailoring is essential for tuning the properties of single-molecule optoelectronic devices, enabling the design of components with specific functionalities and paving the way for more efficient and adaptable nano-optoelectronic systems.

Aug 24, 2024

Engineers make tunable, shape-changing metamaterial inspired by vintage toys

Posted by in categories: particle physics, robotics/AI, space

Common push puppet toys in the shapes of animals and popular figures can move or collapse with the push of a button at the bottom of the toys’ base. Now, a team of UCLA engineers has created a new class of tunable dynamic material that mimics the inner workings of push puppets, with applications for soft robotics, reconfigurable architectures and space engineering.

Inside a push puppet, there are connecting cords that—when pulled taut—will make the toy stand stiff. But by loosening these cords, the “limbs” of the toy will go limp. Using the same cord tension-based principle that controls a puppet, researchers have developed a new type of metamaterial, a material engineered to possess properties with promising advanced capabilities.

Continue reading “Engineers make tunable, shape-changing metamaterial inspired by vintage toys” »

Aug 23, 2024

Quantum sensor detects magnetic and electric fields from a single atom

Posted by in categories: particle physics, quantum physics

The next step, says Esat, is to increase the new device’s magnetic field sensitivity by implementing more advanced sensing protocols based on pulsed electron spin resonance schemes and by finding molecules with longer spin decoherence times. “We hope to increase the sensitivity by a factor of about 1,000, which would allow us to detect nuclear spins at the atomic scale,” he says.

A holy grail for quantum sensing

The new atomic-scale quantum magnetic field sensor should also make it possible to resolve spins in certain emerging two-dimensional quantum materials. These materials are predicted to have many complex magnetic orders, but they cannot be measured with existing instruments, Heinrich and his QNS colleague Yujeong Bae note. Another possibility would be to use the sensor to study so-called encapsulated spin systems such as endohedral-fullerenes, which comprise a magnetic core surrounded by an inert carbon cage.

Page 29 of 591First2627282930313233Last