Menu

Blog

Archive for the ‘particle physics’ category: Page 301

Dec 2, 2021

Black hole conjured up in a lab does the same weird things Stephen Hawking thought it would do

Posted by in categories: cosmology, particle physics, quantum physics

Because leviathan black holes would never fit in a lab, Jeff Steinhauer and his research team created a mini one right here on Earth.


When something rips physics apart, you cross over into the quantum realm, a place inhabited by black holes, wormholes and other things that have been the stars of multiple sci-fi movies. What lives in the quantum realm either hasn’t been proven to exist (yet) or behaves strangely if it does exist.

Black holes often venture into that realm. With these collapsed stars — at least most of them are — being impossible to fly a spacecraft into (unless you never want to see it again), one physicist decided that the best way to get up close to them was under a literal microscope. Jeff Steinhauer wanted to know whether black holes radiate particles like the late Stephen Hawking theorized they would. Because one of these leviathans would never fit in a lab, he and his research team created one right here on Earth.

Continue reading “Black hole conjured up in a lab does the same weird things Stephen Hawking thought it would do” »

Dec 2, 2021

Magnetism generated in 2D organic material

Posted by in categories: nanotechnology, particle physics

A 2D nanomaterial consisting of organic molecules linked to metal atoms in a specific atomic-scale geometry shows non-trivial electronic and magnetic properties due to strong interactions between its electrons.

A new study, published today, shows the emergence of magnetism in a 2D organic material due to strong electron-electron interactions; these interactions are the direct consequence of the material’s unique, star-like atomic-scale structure.

This is the first observation of local magnetic moments emerging from interactions between electrons in an atomically thin 2D organic material.

Dec 1, 2021

Why the cosmic speed limit is below the speed of light

Posted by in categories: particle physics, space

As particles travel through the Universe, there’s a speed limit to how fast they’re allowed to go. No, not the speed of light: below it.

Dec 1, 2021

Physicists Confirm The Existence of Time Crystals in Epic Quantum Computer Simulation

Posted by in categories: computing, particle physics, quantum physics

Are you in the market for a loophole in the laws that forbid perpetual motion? Knowing you’ve got yourself an authentic time crystal takes more than a keen eye for high-quality gems.

In a new study, an international team of researchers used Google’s Sycamore quantum computing hardware to double-check their theoretical vision of a time crystal, confirming it ticks all of the right boxes for an emerging form of technology we’re still getting our head around.

Similar to conventional crystals made of endlessly repeating units of atoms, a time crystal is an infinitely repeating change in a system, one that remarkably doesn’t require energy to enter or leave.

Dec 1, 2021

A unique quantum-mechanical interaction between electrons and topological defects in layered materials

Posted by in categories: particle physics, quantum physics

An international team led by EPFL scientists, has unveiledthat has only been observed in engineered atomic thin layers. The phenomenon can be reproduced by the native defects of lab grown large crystals, making future investigation of Kondo systems and quantum electronic devices more accessible.

The properties of materials that are technologically interesting often originate from defects on their atomic structure. For example, changing the optical properties of rubies with chrome inclusions has helped develop lasers, while nitrogen-vacancy in diamonds are paving the way for applications such as quantum magnetometers. Even in the metallurgical industry, atomic-scale defects like dislocation enhances the strength of forged steel.

Another manifestation of atomic-scale defects is the Kondo effect, which affects a metal’s conduction properties by scattering and slowing the electrons and changing the flow of electrical current through it. This Kondo effect was first observed in metals with very few magnetic defects, e.g. gold with few parts per million of iron inclusions. When the diluted magnetic atoms align all the electrons spin around them, this slows the electrical current motion inside the material, equally along every direction.

Nov 30, 2021

New discovery opens the way for brain-like computers

Posted by in categories: drones, mobile phones, particle physics, robotics/AI, satellites

Research has long strived to develop computers to work as energy efficiently as our brains. A study, led by researchers at the University of Gothenburg, has succeeded for the first time in combining a memory function with a calculation function in the same component. The discovery opens the way for more efficient technologies, everything from mobile phones to self-driving cars.

In recent years, computers have been able to tackle advanced cognitive tasks, like language and image recognition or displaying superhuman chess skills, thanks in large part to artificial intelligence (AI). At the same time, the is still unmatched in its ability to perform tasks effectively and energy efficiently.

“Finding new ways of performing calculations that resemble the brain’s energy-efficient processes has been a major goal of research for decades. Cognitive tasks, like image and voice recognition, require significant computer power, and mobile applications, in particular, like mobile phones, drones and satellites, require energy efficient solutions,” says Johan Åkerman, professor of applied spintronics at the University of Gothenburg.

Nov 30, 2021

A New, Simpler Quantum Computer Runs at Room Temperature

Posted by in categories: computing, particle physics, quantum physics

And it uses components already commercially available.

Engineers at Stanford University have demonstrated a new, simpler design for a quantum computer that could help practical versions of the machine finally become a reality, a report from New Atlas reveals.

The new design sees a single atom entangle with a series of photons, allowing it to process and store more information, as well as run at room temperature — unlike the prototype machines being developed by the likes of Google and IBM.

Continue reading “A New, Simpler Quantum Computer Runs at Room Temperature” »

Nov 30, 2021

Weather forecast favorable for SpaceX launch this week

Posted by in categories: computing, particle physics, quantum physics, space travel

Today’s quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum computers that work using photons—particles of light. Photons can easily carry information from one place to another, and photonic quantum computers can operate at room temperature, so this approach is promising. However, although people have successfully created individual quantum “logic gates” for photons, it’s challenging to construct large numbers of gates and connect them in a reliable fashion to perform complex calculations.

Nov 30, 2021

Physics books of 2021

Posted by in categories: mathematics, particle physics

Explore 10 new works related to particle physics and astrophysics, plus a bonus book on math.

Nov 29, 2021

Researchers propose a simpler design for quantum computers

Posted by in categories: computing, particle physics, quantum physics

Today’s quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum computers that work using photons—particles of light. Photons can easily carry information from one place to another, and photonic quantum computers can operate at room temperature, so this approach is promising. However, although people have successfully created individual quantum “logic gates” for photons, it’s challenging to construct large numbers of gates and connect them in a reliable fashion to perform complex calculations.

Now, Stanford University researchers have proposed a simpler design for photonic quantum computers using readily available components, according to a paper published Nov. 29 in Optica. Their proposed design uses a laser to manipulate a single atom that in turn, can modify the state of the photons via a phenomenon called “quantum teleportation.” The atom can be reset and reused for many quantum gates, eliminating the need to build multiple distinct physical gates, vastly reducing the complexity of building a quantum .

“Normally, if you wanted to build this type of quantum computer, you’d have to take potentially thousands of quantum emitters, make them all perfectly indistinguishable, and then integrate them into a giant photonic circuit,” said Ben Bartlett, a Ph.D. candidate in applied physics and lead author of the paper. “Whereas with this design, we only need a handful of relatively simple components, and the size of the machine doesn’t increase with the size of the quantum program you want to run.”