Menu

Blog

Archive for the ‘particle physics’ category: Page 333

May 26, 2021

Scientists find ultraviolet light may create life-essential chemicals

Posted by in categories: chemistry, mapping, particle physics, space

Circa 2016 o.o!


The theory used to be that hydrocarbons were created in “shocks,” or violent stellar events that cause a lot of turbulence and, with the shock waves, make atoms into ions, which are more likely to combine.

The data from the European Space Agency’s Herschel Space Observatory has since proved that theory wrong. Scientists at Herschel studied the components in the Orion Nebula, mapping the amount, temperature and motions for the carbon-hydrogen molecule (CH), the carbon-hydrogen positive ion (CH+) and their parent molecule: the carbon ion (C+).

Continue reading “Scientists find ultraviolet light may create life-essential chemicals” »

May 26, 2021

In a first, neutrinos were caught interacting at the Large Hadron Collider

Posted by in category: particle physics

Despite the LHC’s fame, all its detectors were oblivious to neutrinos. But not anymore.

May 25, 2021

Probing deeper into origins of cosmic rays

Posted by in categories: information science, particle physics, space travel

Cosmic rays are high-energy atomic particles continually bombarding Earth’s surface at nearly the speed of light. Our planet’s magnetic field shields the surface from most of the radiation generated by these particles. Still, cosmic rays can cause electronic malfunctions and are the leading concern in planning for space missions.

Researchers know cosmic rays originate from the multitude of stars in the Milky Way, including our sun, and other galaxies. The difficulty is tracing the particles to specific sources, because the turbulence of interstellar gas, plasma, and dust causes them to scatter and rescatter in different directions.

In AIP Advances, University of Notre Dame researchers developed a to better understand these and other cosmic ray transport characteristics, with the goal of developing algorithms to enhance existing detection techniques.

May 24, 2021

Record-breaking light has more than a quadrillion electron volts of energy

Posted by in category: particle physics

Hundreds of newly detected gamma rays hint at cosmic environments that accelerate particles to extremes.

May 23, 2021

Could blocking the sun save the planet?

Posted by in categories: chemistry, engineering, particle physics, sustainability

As the need for urgent climate solutions grows, scientists want to put more research into a technology known as solar geoengineering — the idea of chemically altering the atmosphere to reflect sunlight away from Earth.

It is seen as a potential method of cooling the planet and offsetting climate change. But could such a technology curtail a climate catastrophe — or become the cause of it?

Continue reading “Could blocking the sun save the planet?” »

May 23, 2021

Superfluidity seen in a 2D Fermi gas

Posted by in categories: particle physics, quantum physics

Physicists in Germany say they have found definitive evidence for the existence of superfluidity in an extremely cold 2D gas of fermions. Their experiment involved confining a few thousand lithium atoms inside a specially-designed trap, and they say that the finding could help shed light on the role of reduced dimensionality in high-temperature superconductors.

Understanding the mechanisms that allow electrical current to flow without resistance inside cuprate materials at ambient pressure and at temperatures of up to 133 K is one of the biggest outstanding challenges in condensed-matter physics. Although scientists can explain the process behind more conventional, lower-temperature superconductivity, they are still trying to work out how the phenomenon can take place at high temperatures in what are essentially 2D materials (cuprates being made up of layers of copper oxide). Such low-dimensional materials are prone to fluctuations that prevent the long-range coherence thought to be essential for superconductivity.

2D Fermi gases can serve as model systems to try and help clear up this mystery, having strong and tuneable correlations between their constituent fermions that can mimic interactions in superconductors. Macroscopic quantum phenomena such as Bose-Einstein condensation involve large numbers of bosons – particles with integer spin – co-existing in a single quantum state. Fermions, in contrast, have half-integer spin and are subject to the Pauli exclusion principle – which precludes multiple particles sharing quantum states. But fermions can get around this restriction by pairing up and combining their spins.

May 23, 2021

Theoretical physicist Chiara Marletto: ‘The universal constructor could revolutionise civilisation’

Posted by in category: particle physics

The scientist on why studying elementary particles is only one way of explaining phenomena, how the 3D printer could change the world, and her optimism about women in science.

May 23, 2021

The Mental Universe Hypothesis: Reconnecting to Your Cosmic Self

Posted by in categories: alien life, chemistry, evolution, mathematics, particle physics, quantum physics

From a purely scientific frame of reference, many quantum phenomena like non-local correlations between distant entities and wave-particle duality, the wave function collapse and consistent histories, quantum entanglement and teleportation, the uncertainty principle and overall observer-dependence of reality pin down our conscious mind being intrinsic to reality. And this is the one thing the current physicalist paradigm fails to account for. Critical-mass anomalies will ultimately lead to the full paradigm shift in physics. It’s just a matter of time.

With consciousness as primary, everything remains the same and everything changes. Mathematics, physics, chemistry, biology are unchanged. What changes is our interpretation as to what they are describing. They are not describing the unfolding of an objective physical world, but transdimensional evolution of one’s conscious mind. There’s nothing “physical” about our physical reality except that we perceive it that way. By playing the “Game of Life” we evolved to survive not to see quantum mechanical reality. At our classical level of experiential reality we perceive ourselves as physical, at the quantum level we are a probabilistic wave function, which is pure information.

Continue reading “The Mental Universe Hypothesis: Reconnecting to Your Cosmic Self” »

May 22, 2021

Scientists Just Made A Quantum Computing Breakthrough!!

Posted by in categories: information science, particle physics, quantum physics, supercomputing

Keep watching to look at three of the most fantastic quantum breakthroughs that bring liberation and freedom to the world of science today! Subscribe to Futurity for more videos.

#quantum #quantumcomputing #google.

Continue reading “Scientists Just Made A Quantum Computing Breakthrough!!” »

May 22, 2021

Study reveals new details on what happened in the first microsecond of Big Bang

Posted by in categories: alien life, evolution, particle physics

Researchers from University of Copenhagen have investigated what happened to a specific kind of plasma—the first matter ever to be present—during the first microsecond of Big Bang. Their findings provide a piece of the puzzle to the evolution of the universe, as we know it today.

About 14 billion years ago, our changed from being a lot hotter and denser to expanding radically—a process that scientists have named the Big Bang.

And even though we know that this fast expansion created particles, atoms, stars, galaxies and life as we know it today, the details of how it all happened are still unknown.