Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1885

Sep 16, 2019

CAR T Immunotherapy May Find New Use in Treating Cardiac Fibrosis

Posted by in category: biotech/medical

Scientists show the approach can kill cells that cause hardening of heart tissue in mice.

Sep 16, 2019

Robin Farmanfarmaian’s Mission: To Empower The Healthcare Consumer

Posted by in categories: biotech/medical, information science, life extension

Ira Pastor, ideaXme longevity and aging ambassador and Founder of Bioquark, interviews Robin Farmanfarmaian, medical futurist, bestselling author, professional speaker, and CEO and Co-Founder of ArO.

Ira Pastor Comments:

Continue reading “Robin Farmanfarmaian’s Mission: To Empower The Healthcare Consumer” »

Sep 16, 2019

Robin Farmanfarmaian — Medical Futurist / Entrepreneur — ideaXme Show — Ira Pastor

Posted by in categories: aging, augmented reality, big data, bioengineering, biotech/medical, business, health, life extension, military, Ray Kurzweil

Sep 16, 2019

By exploiting a feature of the immune system, researchers open the door for stem cell transplants to repair the brain

Posted by in categories: biotech/medical, genetics, neuroscience

In experiments in mice, Johns Hopkins Medicine researchers say they have developed a way to successfully transplant certain protective brain cells without the need for lifelong anti-rejection drugs.

A report on the research, published Sept. 16 in the journal Brain, details the new approach, which selectively circumvents the against foreign cells, allowing transplanted cells to survive, thrive and protect long after stopping immune-suppressing drugs.

The ability to successfully transplant healthy cells into the without the need for conventional anti-rejection drugs could advance the search for therapies that help children born with a rare but devastating class of genetic diseases in which myelin, the protective coating around neurons that helps them send messages, does not form normally. Approximately 1 of every 100,000 children born in the U.S. will have one of these diseases, such as Pelizaeus-Merzbacher disease. This disorder is characterized by infants missing developmental milestones such as sitting and walking, having involuntary muscle spasms, and potentially experiencing partial paralysis of the arms and legs, all caused by a genetic mutation in the genes that form myelin.

Sep 15, 2019

Hesperos’ multi-organ ‘human-on-a-chip’ found effective for long-term toxicology testing

Posted by in categories: biotech/medical, nanotechnology

The replacement of animals as test subjects is one step closer to reality with the successful testing of multi-organ “human-on-a-chip” models to recapitulate the 28-day experiments typically used in animals to evaluate the systemic toxicity of drug and cosmetic compounds. As published and featured as a frontispiece in the prestigious peer-reviewed scientific journal Advanced Functional Materials, the microfluidic device with interlinking modules containing human-derived heart, liver, skeletal muscle and nervous system cells was able to maintain cellular viability and record cellular function in real-time for 28 days.

The University of Central Florida (UCF) in collaboration with the Florida biotech firm Hesperos, Inc., has shown that one of its innovative four-organ in vitro (out of body) model systems is able to realistically replicate in vivo (in body) responses to sustained drug dosing of human cells.

“The technology could allow us, in the very near future, to move chronic drug experiments from animal models to these novel human in vitro models,” said Hesperos Chief Scientist James J. Hickman, who is a Professor at UCF’s NanoScience Technology Center.

Sep 15, 2019

Compound Created to Help Reconstruct Myelin in Multiple Sclerosis

Posted by in categories: biotech/medical, neuroscience

Another magical flavonoid!


Researchers have created a compound, that when tested in mice, was able to promote the reconstruction of the myelin sheath surrounding neuronal axons. These findings could pave the way to a new treatment for combating demyelinating conditions such as multiple sclerosis (MS). The findings were published in Glia. “I think we’ll know in about a year if this is the exact right drug to try in human clinical trials,” explained senior study author Larry Sherman, Ph.D., in a recent press release.

“If it’s not, we know from the mouse studies that this approach can work. The question is, can this drug be adapted to bigger human brains?”

Continue reading “Compound Created to Help Reconstruct Myelin in Multiple Sclerosis” »

Sep 15, 2019

Fasting for 72 Hours Can Reboot the Entire Immune System, Research Shows

Posted by in categories: biotech/medical, food, health

Anybody can cook, even if it’s only a fried egg – but not just anyone has the discipline to fast. This ancient practice of abstaining from eating for a day, or sometimes even a week or more has a history of curing a whole host of health problems, but even a brief fast can completely re-boot your immune system.

This practice isn’t without criticism by modern nutritionists and unbelievers, but research implies that when the body is hungry in short spurts, it can kick-start stem cells into producing new white blood cells.

White blood cells, also known as leukocytes, are the cells which the immune system uses to fight against foreign invaders like viruses and bad bacteria.

Sep 14, 2019

Meet the 8 Tech Titans Investing in Synthetic Biology

Posted by in categories: bioengineering, biotech/medical, computing, food, sustainability

“DNA is like a computer program but far, far more advanced than any software ever created.” Bill Gates wrote this in 1995, long before synthetic biology – a scientific discipline focused on reading, writing, and editing DNA – was being harnessed to program living cells. Today, the cost to order a custom DNA sequence has fallen faster than Moore’s law; perhaps that’s why the Microsoft founder is turning a significant part of his attention, and wallet, towards this exciting field.

Bill Gates is not the only tech founder billionaire that sees a parallel between bits and biology, either. Many other tech founders – the same people that made their money programming 1s and 0s – are now investing in biotech founders poised to make their own fortunes by programming A’s, T’s, G’s and C’s.

The industry has raised more than $12.3B in the last 10 years and last year, 98 synthetic biology companies collectively raised $3.8 billion, compared to just under $400 million total invested less than a decade ago. Synthetic biology companies are disrupting nearly every industry, from agriculture to medicine to cell-based meats. Engineered microorganisms are even being used to produce more sustainable fabrics and manufacture biofuels from recycled carbon emissions.

Sep 14, 2019

Scientists Develop Gel That Can Regrow Tooth Enamel

Posted by in categories: biotech/medical, materials

Lifeb.


Once tooth enamel breaks or wears away it’s over – it doesn’t grow back. That’s why dentists have to plug in the gaps with artificial fillings. But now, a team of scientists from China’s Zhejiang University and Jiujiang Research Institute says it has finally figured out how to regrow tooth enamel, a development that could totally upend dental care. The team developed a gel that has been found to help mouse teeth regrow enamel within 48 hours. The research has been published in the journal Science Advances.

parts of the tooth
What exactly is enamel and why can’t it regrow? It is a mineralized substance with a highly complicated structure that covers the surface of teeth. The structure is made up of enamel rods interwoven with inter-rods in a fish scale pattern which makes it the hardest tissue in the human body. It is initially formed biologically but once mature it becomes acellular, meaning it becomes devoid of the ability to self-repair. This is why cavities (tooth decay) are one of the most prevalent chronic diseases in humans.

Continue reading “Scientists Develop Gel That Can Regrow Tooth Enamel” »

Sep 14, 2019

The first observation of a stable torus of fluid’s resonance frequencies

Posted by in category: biotech/medical

A team of researchers at Laroche Laboratory, Université Paris Diderot and Université de Lyon has recently collected the first measurements of the resonance frequencies of a stable torus of fluid. The method they used to collect these observations, outlined in a paper published in Physical Review Letters, could enable the modeling of a variety of large-scale structures that transiently arise in vortex rings.

Vortex rings are torus-shaped vortexes that can appear in both liquids and gases in a variety of settings. In nature, there are several examples of these vortex rings, including underwater bubble rings produced by divers or dolphins, smoke rings, and blood rings in the human heart.

“Although it has been shown that the dynamics of a vortex ring are dominated by large-scale structures at its periphery, the mechanisms governing their appearance are not well understood, reflecting to a large extent the experimental difficulties in generating a stable liquid torus under well-controlled conditions,” Eric Falcon, one of the researchers who carried out the recent study, told Phys.org. “It is in this context that we wanted to make a fluid ring stable.”