Toggle light / dark theme

Did the universe really start with a Big Bang? Dr. Richard Lieu thinks otherwise. In this episode, we explore his radical theory of transient temporal singularities—bursts that could replace dark matter, dark energy, and even the Big Bang itself. Get ready to rethink the universe.

Paper link: https://arxiv.org/pdf/2503.

Chapters:
00:00 Introduction.
00:43 The Big Bang Under Scrutiny.
04:31 Gravity Without Mass?
07:56 Implications, Related Theories, and the Future of Cosmology.
11:07 Outro.
11:26 Enjoy.

MUSIC TITLE: Starlight Harmonies.
MUSIC LINK: https://pixabay.com/music/pulses-star… our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nasaspacenewsagency #NSN #NASA #Astronomy #BigBangTheory #RichardLieu #NewCosmology #DarkMatter #DarkEnergy #AlternativePhysics #Astrophysics #SpaceTime #CosmicExpansion #NewScience #CosmologyExplained #ScienceNews #SpaceScience #QuantumGravity #AstroTheory #EinsteinChallenge #MasslessGravity #TemporalSingularity #UniverseOrigin #SpaceUpdate #TimeBurstTheory #BigBangDebunked #ScientificBreakthrough #JamesWebbTelescope #VeraRubinObservatory #PhysicsExplained #ModernCosmology #ScientificTheories #GravityExplained #MindBlowingScience.
Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.
Facebook: / nasaspacenews.
Twitter: / spacenewsnasa.

Join this channel to get access to these perks:

Our Milky Way galaxy is home to some extremely weird things, but a new discovery has astronomers truly baffled.

In data collected by a powerful radio telescope, astronomers have found what appears to be a perfectly spherical bubble. We know more or less what it is – it’s the ball of expanding material ejected by an exploding star, a supernova remnant – but how it came to be is more of a puzzle.

A large international team led by astrophysicist Miroslav Filipović of Western Sydney University in Australia has named the object Teleios, after the ancient Greek for “perfection”. After an exhaustive review of the possibilities, the researchers conclude that we’re going to need more information to understand how this object formed.

Multiple space agencies will send missions to the Moon this decade and the next, with plans to establish infrastructure that will allow for many returns. This includes NASA’s Lunar Gateway and Artemis Base Camp, the Chinese-Roscosmos International Lunar Research Station (ILRS), and the ESA’s Moon Village. With so many space agencies and commercial space companies focused on lunar exploration, there are also multiple plans for establishing research facilities and scientific experiments.

In particular, NASA, China, and the ESA have proposed creating radio astronomy experiments that would operate on the far side of the Moon. In a recent paper, an international team of European astronomers proposed an ultra-long wavelength radio interferometer that could examine the cosmological periods known as the Cosmic Dark Ages and Cosmic Dawn. Known as the Dark Ages Explorer (DEX), this telescope could provide fresh insights into one of the least understood periods in the history of the Universe.

The study was led by Christiaan Brinkerink, a Scientific Engineer with the Radboud Radio Lab (RRL) at Radboud University Nijmegen. He was joined by researchers from the Netherlands Institute for Radio Astronomy (ASTRON), the Eindhoven University of Technology, the Delft University of Technology (TU Delft), the Laboratory for Instrumentation and Research in Astrophysics (LIRA), the Kapteyn Astronomical Institute, the Leiden Observatory, the Cambrige Institute of Astronomy, the Kavli Institute for Cosmology, the European Research Infrastructure Consortium (ERIC), and the ESA’s European Space Research and Technology Center (ESTEC).

Physicists from Oxford have, for the first time, scaled quantum computing using distributed teleportation technology — and this could change everything. From «parallel universes» to Grover’s algorithm, from cryptography to molecular modeling — the world is entering an era where «impossible» problems

In the new study, however, these shapes appeared in calculations describing the energy radiated as gravitational waves when two black holes cruised past one another. This marks the first time they’ve appeared in a context that could, in principle, be tested through real-world experiments.

Mogull likens their emergence to switching from a magnifying glass to a microscope, revealing features and patterns previously undetectable. “The appearance of such structures sheds new light on the sorts of mathematical objects that nature is built from,” he said.

These findings are expected to significantly enhance future theoretical models that aim to predict gravitational wave signatures. Such improvements will be crucial as next-generation gravitational wave detectors — including the planned Laser Interferometer Space Antenna (LISA) and the Einstein Telescope in Europe — come online in the years ahead.

A team of researchers from TU Dortmund University, the University of Paderborn, and the University of Nottingham has developed a new optical method to detect ultra-weak atomic motion. Their experiment performed in Dortmund has demonstrated unprecedented sensitivity of the detection of atomic motion in crystals by exploiting light interference.

The findings, recently published in Nature Materials, open new ways for studying ultrafast processes in materials.

Precise optical measurements rely on interferometers, where the beam probing a distance of interest interferes with a reference beam traveling a fixed path. This allows for assessing the path length difference of the two beams with high precision. A striking example is gravitational interferometers, which detect induced by a distant event in the universe, such as the collision of black holes.

High-energy particles or gamma rays are usually needed to kick an atomic nucleus up to a higher-energy state. But last year, scientists excited thorium-229 nuclei with just laser light (see Viewpoint: Shedding Light on the Thorium-229 Nuclear Clock Isomer). Laser-excited nuclei could be useful for making precise timekeepers and sensitive quantum sensors. And now, Wolfram Ratzinger at the Weizmann Institute of Science in Israel and his colleagues have shown how these nuclei also provide a way to detect certain speculative particles that may constitute dark matter [1].

Several models of dark matter involve axions or other extremely light bosons. Thanks to their lightness, these particles would have to be abundant—so much so that they would collectively behave like a classical field, oscillating at a frequency proportional to their mass. The particles’ interactions with the building blocks of nuclei—quarks and gluons—would cause various nuclear properties to oscillate at that same frequency. Among those properties is the energy of the photon emitted by an excited thorium-229 nucleus. Crucially, the oscillations in that energy are predicted to be much more pronounced, and therefore easier to detect, than those in other properties.

Ratzinger and his colleagues conducted the first-ever search for these oscillations in a previously reported spectrum of light emitted by excited thorium-229 nuclei. Finding no oscillations, the researchers set upper limits on the coupling strength of ultralight dark matter particles to quarks and gluons for particles ranging in mass from 10–20 to 10–13 eV. These limits are less stringent than those obtained through other means, but the team anticipates that ongoing and future experiments could set much stronger and possibly decisive constraints.

In a new study published in Physical Review Letters, scientists have estimated a new lower bound on the mass of ultra-lightweight bosonic dark matter particles.

Purported to make up about 85% of the matter content in the universe, dark matter has eluded direct observation. Its existence is only inferred by its gravitational effects on cosmic structures.

Because of this, scientists have been unable to identify the nature of dark matter and, therefore, its mass. According to our current model of quantum mechanics, all fundamental particles must be either fermions or bosons.