Menu

Blog

Archive for the ‘biotech/medical’ category: Page 227

Feb 9, 2024

Daedalus, which is building precision-manufacturing factories powered by AI, raises $21M

Posted by in categories: biotech/medical, robotics/AI

A fledgling startup founded by one of OpenAI’s first engineering hires is looking to “redefine manufacturing,” with AI-powered factories for creating bespoke precision parts.

Daedalus, as the company is called, is based in the southwestern German city of Karlsruhe, where its solo factory is currently housed. Here, Daedalus takes orders from industries such as medical devices, aerospace, defense, and semiconductors, each requiring unique components for their products. For example, a pharmaceutical company might require a customized metal casing for a valve used in the production of a particular medicine.

As it looks to ramp up operations with a view toward opening additional factories in its domestic market, Daedalus today announced it has raised $21 million in a Series A round of funding led by Nokia-funded NGP Capital, with participation from existing investors Khosla Ventures and Addition.

Feb 9, 2024

Urokinase therapy improves diabetic foot ulcers healing and decreases CV events in diabetes patients

Posted by in category: biotech/medical

Urokinase therapy improves diabetic foot ulcer healing and decreases CV events in diabetes patients suggests a new study published in the BMJ Open Diabetes Research & Care.

Diabetic foot ulcer (DFU) is a disabling complication of diabetes mellitus. Here, we attempted to assess whether long-term intrafemoral artery infusion of low-dose urokinase therapy improved Diabetic foot ulcers and decreased cardiovascular events in patients with Diabetic foot ulcers were randomized to continuous intrafemoral thrombolysis or conventional therapy groups. The continuous intrafemoral thrombolysis group received continuous intrafemoral urokinase injection for 7 days, and conventional therapy just received wound debridement and dressing change. Then, a follow-up of average 6.5 years was performed. Results: Compared with conventional therapy, at the first 1 month of intervention stage, the ulcers achieved a significant improvement in continuous intrafemoral thrombolysis group including a complete closure (72.4% vs 17.5%), an improved ulcer (27.6% vs 25.8%), unchanged or impaired ulcer (0% vs 56.7%). During the 6.

Feb 9, 2024

New study shows success in diabetic cardiomyopathy research

Posted by in category: biotech/medical

A new study shows congenital heart disease can be induced by pregestational diabetes using advanced human heart organoids.

Feb 9, 2024

One-shot CRISPR treatment for inherited disease aces first human trial

Posted by in category: biotech/medical

A CRISPR treatment for hereditary angioedema significantly reduced swelling attacks in its first human trial.

Feb 9, 2024

A magnetically powered nanomachine with a DNA clutch

Posted by in categories: biotech/medical, nanotechnology

The nanospace confinement of a magnetic nanoparticle within a porous cage, coupled with an encodable DNA clutch interface, enables a remotely powered and controlled rotary nanomotor that is autoresponsive to its microenvironment.

Feb 9, 2024

Organic semiconductors with proton-hopping promise

Posted by in categories: biotech/medical, electronics

Chemists at RIKEN have developed a method for making synthetic derivatives of the natural dye indigo that doesn’t require harsh conditions. This discovery could inspire advances in electronic devices, including light-responsive gadgets and stretchy biomedical sensors.

Semiconductors based on organic molecules are attracting much interest because—unlike conventional rigid semiconductors based on silicon—they could be flexible, ductile and lightweight, opening up new possibilities for designing semiconductor devices.

Organic molecules also have the advantage of realizing a broad range of structures. “Organic semiconductors have flexibility in molecular design, enabling them to adopt new functionalities,” says Keisuke Tajima of the RIKEN Center for Emergent Matter Science, who led the research.

Feb 9, 2024

Combining materials may support unique superconductivity for quantum computing

Posted by in categories: biotech/medical, computing, quantum physics

A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing. The new combination of materials, created by a team led by researchers at Penn State, could also provide a platform to explore physical behaviors similar to those of mysterious, theoretical particles known as chiral Majoranas, which could be another promising component for quantum computing.

The new study appears in the journal Science. The work describes how the researchers combined the two magnetic materials in what they called a critical step toward realizing the emergent interfacial , which they are currently working toward.

Superconductors—materials with no —are widely used in digital circuits, the powerful magnets in imaging (MRI) and , and other technology where maximizing the flow of electricity is crucial.

Feb 9, 2024

6 Medical Breakthroughs Remaking Modern Health

Posted by in categories: biotech/medical, health, neuroscience

From Alzheimer’s discoveries to animal organ transplants, new breakthroughs are improving and extending lives.

Feb 9, 2024

Beyond cells: Unveiling the potential of genetic circuits on single DNA molecules

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

In a new Nature Communications study, researchers have explored the construction of genetic circuits on single DNA molecules, demonstrating localized protein synthesis as a guiding principle for dissipative nanodevices, offering insights into artificial cell design and nanobiotechnology applications.

The term “genetic circuit” is a metaphorical description of the complex network of genetic elements (such as genes, promoters, and ) within a cell that interact to control and cellular functions.

In the realm of artificial cell design, scientists aim to replicate and engineer these genetic circuits to create functional, self-contained units. These circuits act as the molecular machinery responsible for orchestrating cellular processes by precisely regulating the production of proteins and other molecules.

Feb 8, 2024

New mRNA ‘cancer vaccine’ trial launches in UK

Posted by in categories: biotech/medical, life extension

— Anti-aging vaccine shows promise in mice — will it work in humans?

“This research is still in the early stages and may be a number of years from being available to patients,” Dr. David Pinato, a clinician scientist at Imperial College London’s Department of Surgery & Cancer and a consultant medical oncologist at Imperial College Healthcare NHS Trust, said in the statement. “But this trial is laying crucial groundwork that is moving us closer towards new therapies that are potentially less toxic and more precise.”

The first person treated in the U.K. arm of the trial wishes to remain anonymous, but said “I was pleased to be offered a chance to take part in a new trial.”

Page 227 of 2,687First224225226227228229230231Last