Toggle light / dark theme

Surprising research result: All immature cells can develop into stem cells

A sensational new study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development. The study reveals that the destiny of intestinal cells is not predetermined, but instead determined by the cells’ surroundings. The new knowledge may make it easier to manipulate stem cells for stem cell therapy. The results have been published in Nature.

All in the foetal gut have the potential to develop into , a new study conducted at the Faculty of Health and Medical Sciences at the University of Copenhagen concludes. The researchers behind the study have discovered that the development of immature intestinal cells—contrary to previous assumptions—is not predetermined, but affected by the cells’ immediate surroundings in the intestines. This discovery may ease the path to effective , says Associate Professor Kim Jensen from the Biotech Research & Innovation Centre (BRIC) and the Novo Nordisk Foundation Center for Stem Cell Biology (DanStem).

“We used to believe that a cell’s potential for becoming a stem cell was predetermined, but our new results show that all immature cells have the same probability for becoming stem cells in the fully developed organ. In principle, it is simply a matter of being in the right place at the right time. Here signals from the cells’ surroundings determine their fate. If we are able to identify the signals that are necessary for the immature cell to develop into a stem cell, it will be easier for us to manipulate cells in the wanted direction.”

Read more

Natural compound found in broccoli reawakens the function of potent tumor suppressor

Your mother was right: Broccoli is good for you. Long associated with decreased risk of cancer, broccoli and other cruciferous vegetables—the family of plants that also includes cauliflower, cabbage, collard greens, Brussels sprouts and kale—contain a molecule that inactivates a gene known to play a role in a variety of common human cancers. In a new paper published today in Science, researchers, led by Pier Paolo Pandolfi, MD, Ph.D., Director of the Cancer Center and Cancer Research Institute at Beth Israel Deaconess Medical Center, demonstrate that targeting the gene, known as WWP1, with the ingredient found in broccoli suppressed tumor growth in cancer-prone lab animals.

“We found a new important player that drives a pathway critical to the development of , an enzyme that can be inhibited with a natural compound found in broccoli and other ,” said Pandolfi. “This pathway emerges not only as a regulator for control, but also as an Achilles’ heel we can target with therapeutic options.”

A well-known and potent suppressive gene, PTEN is one of the most frequently mutated, deleted, down-regulated or silenced in human cancers. Certain inherited PTEN mutations can cause syndromes characterized by cancer susceptibility and developmental defects. But because complete loss of the gene triggers an irreversible and potent failsafe mechanism that halts proliferation of cancer cells, both copies of the gene (humans have two copies of each gene; one from each parent) are rarely affected. Instead, exhibit lower levels of PTEN, raising the question whether restoring PTEN activity to normal levels in the cancer setting can unleash the gene’s tumor suppressive activity.

Read more

A New Ion-Drive Transistor Is Here to Interface With Your Brain

Silicon transistors and the brain don’t mix.

At least not optimally. As scientists and companies are increasingly exploring ways to interface your brain with computers, fashioning new hardware that conforms to and compliments our biological wetware becomes increasingly important.

To be fair, silicon transistors, when made into electrode arrays, can perform the basics: record neural signals, process and analyze them with increasingly sophisticated programs that detect patterns, which in turn can be used to stimulate the brain or control smart prosthetics.

Read more

Scientists: We’ll Grow Babies in Artificial Wombs “In a Decade”

In coming years, scientists plan to grow human embryos in a lab using high-tech artificial wombs.

Doctors at the Children’s Hospital of Philadelphia are in talks with the U.S. Food and Drug Administration (FDA) to begin testing artificial wombs on human embryos within the next two years, according to Metro. If they’re successful, the research could radically change the way we view pregnancy, childbirth, and perhaps even human evolution.

Read more

Self-repairing batteries: engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a material that can significantly extend the life of batteries and afford them higher capacities, as well.

From smartphones to pacemakers and cars, batteries power much of our world and their importance only continues to grow. There are two particular aspects of batteries that many believe need to improve to meet our future needs. These are the longevity of the and also its capacity—how much charge it can store.

The chances are your devices use a type of battery called a . But another kind based on sodium rather than lithium may become commonplace soon. Both kinds of battery can store and deliver a large amount of charge, thanks to the way constituent materials pass electrons around. But in both lithium and in sodium batteries, repeated cycles of charging and usage can significantly reduce the storage capacity over time.

Read more

Researchers have identified the first human-specific fusion gene

University at Buffalo researchers have identified the first human-specific fusion gene—a hybrid of two genes—implicated in Alzheimer’s disease. The finding suggests that a neurotransmitter receptor, previously successful in animal studies but that failed in human trials for Alzheimer’s, might still turn out to be a valuable therapy.

In a paper published in February in Translational Psychiatry, the UB researchers reported that this human gene acts on a receptor for the neurotransmitter acetylcholine, which is involved in memory and learning, and which is reduced in people with Alzheimer’s.

The fusion gene is CHRFAM7A, which is very common in people and has been implicated in many , such as schizophrenia and bipolar disease.

Read more

Scientists create mind-controlled hearing aid

A mind-controlled hearing aid that allows the wearer to focus on particular voices has been created by scientists, who say it could transform the ability of those with hearing impairments to cope with noisy environments.

The device mimics the brain’s natural ability to single out and amplify one voice against background conversation. Until now, even the most advanced hearing aids work by boosting all voices at once, which can be experienced as a cacophony of sound for the wearer, especially in crowded environments.

Nima Mesgarani, who led the latest advance at Columbia University in New York, said: “The brain area that processes sound is extraordinarily sensitive and powerful. It can amplify one voice over others, seemingly effortlessly, while today’s hearing aids still pale in comparison.”

Read more

CRISPR catches out critical cancer changes

In the first large-scale analysis of cancer gene fusions, which result from the merging of two previously separate genes, researchers at the Wellcome Sanger Institute, EMBL-EBI, Open Targets, GSK and their collaborators have used CRISPR to uncover which gene fusions are critical for the growth of cancer cells. The team also identified a new gene fusion that presents a novel drug target for multiple cancers, including brain and ovarian cancers.

The results, published today (16 May) in Nature Communications, give more certainty for the use of specific to diagnose and guide the treatment of patients. Researchers suggest existing drugs could be repurposed to treat some people with pancreatic, breast and lung cancers, based on the gene fusions found in their tumours.

Gene fusions, caused by the abnormal joining of two otherwise different , play an important role in the development of . They are currently used as diagnostic tools to predict how particular cancer patients will respond to drugs, as well as prognostics, to estimate the outcome for a patient given the best possible care. They are also the targets of some of the latest targeted treatments for cancer.

Read more