Menu

Blog

Archive for the ‘biotech/medical’ category: Page 2602

Feb 5, 2016

Northwestern University researchers develop a hybrid polymer

Posted by in categories: biotech/medical, computing, electronics, materials, nanotechnology

What would be really cool is have a “Computer Screen in a Can”; take your polymer spray and instantly create a screen on a table, a window, suitcase, etc. with your “Computer Screen in a Can”; U Can! I can just imagine the infomercials. On a more serious note — NW Univ has developed a new Hybrid Polymer which is going to expand the capabilities of polymer into so many areas in medicine, to manufacturing, electronics, self reparing material & devices, etc.

http://www.compositesworld.com/news/northwestern-university-…id-polymer


A completely new hybrid polymer has been developed by Northwestern University (Evanston, IL) researchers.

“We have created a surprising new polymer with nano-sized compartments that can be removed and chemically regenerated multiple times,” said materials scientist Samuel Stupp, the senior author of the study and director of Northwestern’s Simpson Querrey Institute for BioNanotechnology. The study was published in the Jan. 29 issue of Science.

Continue reading “Northwestern University researchers develop a hybrid polymer” »

Feb 5, 2016

Who’s to Blame (Part 1): The Legal Vacuum Surrounding Autonomous Weapons

Posted by in categories: biotech/medical, law, military, robotics/AI

Future of Life Institute illustrate their objection to automated lethal robots:

“Outrage swells within the international community, which demands that whoever is responsible for the atrocity be held accountable. Unfortunately, no one can agree on who that is”


The year is 2020 and intense fighting has once again broken out between Israel and Hamas militants based in Gaza. In response to a series of rocket attacks, Israel rolls out a new version of its Iron Dome air defense system. Designed in a huge collaboration involving defense companies headquartered in the United States, Israel, and India, this third generation of the Iron Dome has the capability to act with unprecedented autonomy and has cutting-edge artificial intelligence technology that allows it to analyze a tactical situation by drawing from information gathered by an array of onboard sensors and a variety of external data sources. Unlike prior generations of the system, the Iron Dome 3.0 is designed not only to intercept and destroy incoming missiles, but also to identify and automatically launch a precise, guided-missile counterattack against the site from where the incoming missile was launched. The day after the new system is deployed, a missile launched by the system strikes a Gaza hospital far removed from any militant activity, killing scores of Palestinian civilians. Outrage swells within the international community, which demands that whoever is responsible for the atrocity be held accountable. Unfortunately, no one can agree on who that is…

Continue reading “Who’s to Blame (Part 1): The Legal Vacuum Surrounding Autonomous Weapons” »

Feb 5, 2016

Pan-Cancer Epigenetic Signature Readable in Circulating Tumor DNA

Posted by in categories: biotech/medical, genetics

Could researchers found the magic bullet for cancer? NIH thinks possibly that they have.


Epigenetic marks seen across multiple cancers may serve as a biomarker for identifying solid tumor DNA in blood samples.

Read more

Feb 5, 2016

Inflammation in the Gut Increases Risk of Colon Cancer

Posted by in category: biotech/medical

Repeated incidents of inflammation in the stomach could mean a higher risk to colon cancer — new research released shows this.


“A quarter of the world’s population is affected by some type of gut inflammation and these patients always have a much higher chance of developing colon cancer,” said lead author Xiling Shen, associate professor at Duke University in North Carolina, US.

The scientists focussed on a microRNA — a class of naturally occurring, small non-coding ribonucleic acid (RNA) molecules — called miR-34a that gives cancer stem cells the odd ability to divide asymmetrically. This process controls the cancerous stem cell population and generates a diverse set of cells.

Continue reading “Inflammation in the Gut Increases Risk of Colon Cancer” »

Feb 5, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas

Posted by in categories: biotech/medical, nanotechnology

Interesting — I need to check in this one a little more.


Abstract: Researchers from Iran and Malaysia designed a nanostructure based on carbon nanotubes with antibacterial properties to be used in public places, specially hospitals and clinics.

Read more

Feb 5, 2016

This new soft robotic gripper can gently pick up objects of practically any shape

Posted by in categories: biotech/medical, cyborgs, food, robotics/AI, space

Robots aren’t exactly known for their delicate touch, but soon, the stereotype of the non-gentle machine may change. Scientists say they have managed to develop a robot with “a new soft gripper” that makes use of a phenomenon known as electroadhesion — which is essentially the next best thing to giving robots opposable thumbs. According to EPFL scientists, these next-gen grippers can handle fragile objects no matter what their shape — everything from an egg to a water balloon to a piece of paper is fair game.

This latest advance in robotics, funded by NCCR Robotics, may allow machines to take on unprecedented roles. “This is the first time that electroadhesion and soft robotics have been combined together to grasp objects,” said Jun Shintake, a doctoral student at EPFL. Potential applications include handling food, capturing debris (both in space and at home), or even being integrated into prosthetic limbs.

Read more

Feb 5, 2016

Modelling how the brain makes complex decisions

Posted by in categories: biotech/medical, neuroscience

Researchers have constructed the first comprehensive model of how neurons in the brain behave when faced with a complex decision-making process, and how they adapt and learn from mistakes.

The mathematical , developed by researchers from the University of Cambridge, is the first biologically realistic account of the process, and is able to predict not only behaviour, but also neural activity. The results, reported in the Journal of Neuroscience, could aid in the understanding of conditions from and addiction to Parkinson’s disease.

The model was compared to experimental data for a wide-ranging set of tasks, from simple binary choices to multistep sequential . It accurately captures behavioural choice probabilities and predicts choice reversal in an experiment, a hallmark of complex decision making.

Read more

Feb 4, 2016

BREAKING: An Injectable HIV Treatment Could Be Ready By 2017

Posted by in categories: biotech/medical, innovation

CytoDyn Inc. announced in a news release last week that its ongoing extension study of PRO 140 monotherapy has shown “complete viral-load suppression” for well over a year, with some patients approaching 17 months. The phase I trial included 23 patients.

“The company believes that complete virologic suppression through treatment with a single agent, PRO 140, a safe and efficacious antibody, rather than through the widely used HAART combination therapy, could present a significant opportunity to treat HIV patients. Based on these monotherapy results, the company plans to file a second Phase 3 protocol for PRO 140 monotherapy with the FDA. CytoDyn is currently conducting a pivotal phase 3 trial for PRO 140 as an adjunct therapy with expected commercialization in 2017.”

On Jan 22, the company filed a request for Breakthrough Therapy Designation with the FDA for PRO 140 as a treatment for HIV-1 infection in treatment experienced patients with virologic failure, meaning other medications alone no longer work for them.

Read more

Feb 4, 2016

Mental Miscues

Posted by in categories: biotech/medical, computing, engineering, neuroscience

Very interesting discovery about how our brain thinks; our brain isn’t always 100% error proof according to this report from Carnegie Mellon University. Therefore, when researchers are mapping the brain plus mimicking human brain functions; what is the tolerance level for error allowed then?


(Source: Carnegie Mellon University)A study conducted at Carnegie Mellon University investigated the brain’s neural activity during learned behavior and found that the brain makes mistakes because it applies incorrect inner beliefs, or internal models, about how the world works. The research suggests that when the brain makes a mistake, it actually thinks that it is making the correct decision—its neural signals are consistent with its inner beliefs, but not with what is happening in the real world.

“Our brains are constantly trying to predict how the world works. We do this by building internal models through experience and learning when we interact with the world,” said Steven Chase, an assistant professor in the Department of Biomedical Engineering and the Center for the Neural Basis of Cognition. “However, it has not yet been possible to track how these internal models affect instant-by-instant behavioral decisions.”

Continue reading “Mental Miscues” »

Feb 4, 2016

DNA used to assemble nanoparticles into a copy of the crystalline structure of diamond

Posted by in categories: biotech/medical, computing, materials, nanotechnology, particle physics

Building building diamond lattices through DNA.


Using bundled strands of DNA to build Tinkertoy-like tetrahedral cages, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have devised a way to trap and arrange nanoparticles in a way that mimics the crystalline structure of diamond. The achievement of this complex yet elegant arrangement, as described in a paper published February 5, 2016, in Science, may open a path to new materials that take advantage of the optical and mechanical properties of this crystalline structure for applications such as optical transistors, color-changing materials, and lightweight yet tough materials.

“We solved a 25-year challenge in building diamond lattices in a rational way via self-assembly,” said Oleg Gang, a physicist who led this research at the Center for Functional Nanomaterials (CFN) at Brookhaven Lab in collaboration with scientists from Stony Brook University, Wesleyan University, and Nagoya University in Japan.

Continue reading “DNA used to assemble nanoparticles into a copy of the crystalline structure of diamond” »