Toggle light / dark theme

Increasing the biomolecular relevance of cell culture practice

An informative review on the benefits and drawbacks and biological effects of various kinds of in vitro cell culture media.


The biomolecular relevance of medium supplements is a key challenge affecting cell culture practice. The biomolecular composition of commonly used supplements differs from that of a physiological environment, affecting the validity of conclusions drawn from in vitro studies. This article discusses the advantages and disadvantages of common supplements, including context-dependent considerations for supplement selection to improve biomolecular relevance, especially in nanomedicine and extracellular vesicle research.

World’s first cryopreservation facility could unlock immortality, delay death

Think of a future where terminal illnesses can be temporarily halted, allowing time for the development of potential cures.

TimeShift, the world’s first cryopreservation facility, seeks to make the impossible – extending human lifespan – a reality.

The conceptualized facility would provide a means of freezing or preserving patients’ bodies with terminal illnesses. This way, it could mitigate the progression of neurodegenerative diseases and aggressive cancers. And possibly enable experts to develop a cure.

Youthful Brain Stem Cells Linked to Autism and Brain Cancer

Summary: Researchers have identified a unique stem cell in the young brain capable of maturing into multiple cell types, potentially explaining the origins of autism and glioblastoma. These stem cells show gene expression patterns that regulate early brain development and, when disrupted, could lead to neurological conditions.

The study provides a detailed gene expression map, linking autism-related genes to immature neurons active during brain growth. The findings open avenues for targeting glioblastoma’s origins and better understanding autism’s developmental roots.

Dr. Marcia McNutt — President, National Academy of Sciences — Shaping Culture & Conduct Of Science

Shaping The Culture & Conduct Of Science — Dr. Marcia McNutt Ph.D. — President, National Academy Of Sciences


Dr. Marcia McNutt, Ph.D. is President of the National Academy of Sciences (https://www.nasonline.org/directory-e…), where she also chairs the National Research Council, the operating arm of the National Academies of Sciences, Engineering, and Medicine, and serves a key role in advising our nation on various important issues pertaining to science, technology, and health.

From 2013 to 2016, Dr. McNutt served as editor-in-chief of the Science journals.

Dr. McNutt is a geophysicist who prior to joining Science, was director of the U.S. Geological Survey (USGS) and science adviser to the United States Secretary of the Interior from from 2009 to 2013. During her tenure, the USGS responded to a number of major disasters, including earthquakes in Haiti, Chile, and Japan, and the Deepwater Horizon oil spill.

Dr. McNutt led a team of government scientists and engineers at BP headquarters in Houston who helped contain the oil and cap the well. She directed the flow rate technical group that estimated the rate of oil discharge during the spill’s active phase. For her contributions, she was awarded the U.S. Coast Guard’s Meritorious Service Medal.

Relative Distribution of DnaA and DNA in Escherichia coli Cells as a Factor of Their Phenotypic Variability

🧬 🧑🏻‍🔬 By Prof. Itzhak Fishov, et al.

🔗


Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability. We focus on the nucleoid hyperstructure containing numerous DNA-associated proteins, including the replication initiator DnaA. Previously, we found an increasing asynchrony in the nucleoid segregation dynamics in growing E. coli cell lineages and suggested that variable replication initiation timing may be the main cause of this phenomenon.

How macronucleophagy ensures survival in nitrogen-starved yeast

Autophagy, the cell’s essential housekeeping process, involves degrading and recycling damaged organelles, proteins, and other components to prevent clutter. This vital mechanism, found in all life forms from single-celled organisms to plants and animals, is key to maintaining cellular homeostasis. Its disruption is linked to many known diseases in humans, such as Alzheimer’s, Parkinson’s, and cancer.

Though understanding in detail is important from medical and biological perspectives, it is not a one-size-fits-all process. There are several forms of autophagy that differ in how the components to be degraded are transported to the lysosomes or vacuoles—the organelles that serve as the cell’s waste disposal and recycling centers.

Autophagy targets a range of intracellular components, including a part of the nucleus that stores important chromosomes. However, the physiological significance of autophagic degradation of the nucleus remains unknown.

Specialized hardware solves high-order optimization problems with in-memory computing

In an unprecedented new study, researchers have shown neurotransmitters in the human brain are released during the processing of the emotional content of language, providing new insights into how people interpret the significance of words.

The work, conducted by an international team led by Virginia Tech scientists, offers deeper understanding into how language influences human choices and mental health.

Spearheaded by computational neuroscientist Read Montague, a professor of the Fralin Biomedical Research Institute at VTC and director of the institute’s Center for Human Neuroscience Research, the study represents a first-of-its-kind exploration of how neurotransmitters process the emotional content of language—a uniquely human function.

Micro, modular, mobile—DNA-linked microrobots offer new possibilities in medicine and manufacturing

When robots are made out of modular units, their size, shape, and functionality can be modified to perform any number of tasks. At the microscale, modular robots could enable applications like targeted drug delivery and autonomous micromanufacturing; but building hundreds of identical robots the size of a red blood cell has its challenges.

“At this scale, robots are not big enough to hold a microcontroller to tell them what to do,” explained Taryn Imamura, a Ph.D. Candidate in Carnegie Mellon University’s Department of Mechanical Engineering.

“Active colloids (the robots) have what we call embodied intelligence, meaning their behavior, including the speed at which they travel, is determined by their size and shape. At the same time, it becomes more difficult to build microrobots that have the same size and structure as they get smaller.”

Life in Slow Motion: Can Time Perception and the Speed of Information Processing be Manipulated?

Author: Agnes Chan // Editor: Erin Pallott

I believe most of you have seen that in movies life-threatening events are often depicted in slow motion. Have you ever wondered that it may be true that time is slowed down during certain events? There are several situations in which time was reported to have slowed down or things appeared to happen in slow motion. For example, people often report time slowing down during car crashes or other high-adrenaline situations. These situations are often associated with high levels of fear and danger. If time appeared to be slowing down, it implies that the speed of the internal clock increased during the event. Similar phenomena were reported in military firefights and professional players of high-speed sports reporting their opponents moving in slow motion. It can also be seen in more ordinary events like anxiously waiting for a doctor’s appointment and the passing of time felt slower.