Menu

Blog

Archive for the ‘biotech/medical’ category: Page 30

Sep 8, 2024

New large scale gene editing technique

Posted by in categories: bioengineering, biotech/medical, genetics

A novel method utilising genes in our body to perform long-sequence DNA recombination and editing, called the RNA bridge, has been discovered and reported by genetic engineers. ThePrint #̦PureScience, Sandhya Ramesh explains the findings and implications.

Sources and further reading:

Continue reading “New large scale gene editing technique” »

Sep 8, 2024

Finger wrap uses sweat to provide health monitoring at your fingertips

Posted by in categories: biotech/medical, chemistry, engineering, health, wearables

A sweat-powered wearable has the potential to make continuous, personalized health monitoring as effortless as wearing a Band-Aid. Engineers at the University of California San Diego have developed an electronic finger wrap that monitors vital chemical levels—such as glucose, vitamins, and even drugs—present in the same fingertip sweat from which it derives its energy.

The advance was published Sept. 3 in Nature Electronics by the research group of Joseph Wang, a professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at UC San Diego.

The device, which wraps snugly around the finger, draws power from an unlikely source—the fingertip’s . Fingertips, despite their , are among the body’s most prolific sweat producers, each packed with over a thousand . These glands can produce 100 to 1,000 times more sweat than most other areas of the body, even during rest.

Sep 7, 2024

Revolutionizing 3D printing through microwave technology

Posted by in categories: 3D printing, biotech/medical

In the rapidly evolving world of 3D printing, the pursuit of faster, more efficient and versatile production methods is never-ending. Traditional 3D printing techniques, while groundbreaking, are often time-consuming and limited in the kinds of materials they can use as feedstock.

But, through a new process a Lawrence Livermore National Laboratory (LLNL) team is calling Microwave Volumetric Additive Manufacturing (MVAM), researchers have introduced an innovative new approach to 3D printing using microwave energy to cure materials, opening the door to a broader range of materials than ever before.

In a recent paper published in Additive Manufacturing Letters, LLNL researchers describe the potential of microwave energy to penetrate a wider range of materials compared to light-based volumetric additive manufacturing (VAM).

Sep 7, 2024

Improved method for phonon lasers ‘locks’ sound waves into a more stable and powerful state

Posted by in category: biotech/medical

Scientists have made a significant leap in developing lasers that use sound waves instead of light. These phonon lasers hold promise for advancements in medical imaging, deep-sea exploration, and other areas.

Sep 7, 2024

Picking up good vibes from a stranger? That might be your neurons aligning

Posted by in categories: biotech/medical, media & arts, neuroscience

Imagine you’re sitting across from a friend, having a conversation.


I’m a die-hard Beach Boys fan. In one of their most famous songs, they sing about “pickin’ up good vibrations” from a girl. We’ve all felt those “good vibes” when we’re connecting with someone new. I used to think that feeling was a mysterious, mystical experience — something I couldn’t fully explain that bonded me with some friends and strangers more easily than others.

It turns out that “good vibes” aren’t as mysterious as I thought.

Continue reading “Picking up good vibes from a stranger? That might be your neurons aligning” »

Sep 7, 2024

FDA advisers discuss future of ‘artificial womb’ for human infants

Posted by in categories: biotech/medical, ethics, health

Independent advisers to the US Food and Drug Administration are meeting this week to discuss the regulations, ethics and possibilities of creating an artificial womb to increase the chances that extremely premature babies would survive — and without long-term health problems.

Sep 7, 2024

Gene therapy restores sight with up to 10,000-fold vision improvement

Posted by in categories: biotech/medical, genetics

This gene therapy treats LCA1, causing early childhood vision loss, affecting under 100,000 people:


“One patient reported for the first time being able to navigate at midnight outdoors only with the light of a bonfire,” said Cideciyan, who is also co-director of the Center for Hereditary Retinal Degenerations.

Continue reading “Gene therapy restores sight with up to 10,000-fold vision improvement” »

Sep 6, 2024

Fats in blood, with inflammation, could better predict heart disease risk in women, study finds

Posted by in categories: biotech/medical, health

For the study, the researchers analysed blood samples and medical information from 27,939 healthcare providers living in the US, who participated in the Women’s Health Study. The women were on average aged 55 at the study’s start (1992−1995) and followed for 30 years.

Sep 6, 2024

Treating Epidemics as Feedback Loops

Posted by in categories: biotech/medical, engineering, mapping, mathematics

During the worst days of the COVID-19 pandemic, many of us became accustomed to news reports on the reproduction number R, which is the average number of cases arising from a single infected case. If we were told that R was much greater than 1, that meant the number of infections was growing rapidly, and interventions (such as social distancing and lockdowns) were necessary. But if R was near to 1, then the disease was deemed to be under control and some relaxation of restrictions could be warranted. New mathematical modeling by Kris Parag from Imperial College London shows limitations to using R or a related growth rate parameter for assessing the “controllability” of an epidemic [1]. As an alternative strategy, Parag suggests a framework based on treating an epidemic as a positive feedback loop. The model produces two new controllability parameters that describe how far a disease outbreak is from a stable condition, which is one with feedback that doesn’t lead to growth.

Parag’s starting point is the classical mathematical description of how an epidemic evolves in time in terms of the reproduction number R. This approach is called the renewal model and has been widely used for infectious diseases such as COVID-19, SARS, influenza, Ebola, and measles. In this model, new infections are determined by past infections through a mathematical function called the generation-time distribution, which describes how long it takes for someone to infect someone else. Parag departs from this traditional approach by using a kind of Fourier transform, called a Laplace transform, to convert the generation-time distribution into periodic functions that define the number of the infections. The Laplace transform is commonly adopted in control theory, a field of engineering that deals with the control of machines and other dynamical systems by treating them as feedback loops.

The first outcome of applying the Laplace transform to epidemic systems is that it defines a so-called transfer function that maps input cases (such as infected travelers) onto output infections by means of a closed feedback loop. Control measures (such as quarantines and mask requirements) aim to disrupt this loop by acting as a kind of “friction” force. The framework yields two new parameters that naturally describe the controllability of the system: the gain margin and the delay margin. The gain margin quantifies how much infections must be scaled by interventions to stabilize the epidemic (where stability is defined by R = 1). The delay margin is related to how long one can wait to implement an intervention. If, for example, the gain margin is 2 and the delay margin is 7 days, then the epidemic is stable provided that the number of infections doesn’t double and that control measures are applied within a week.

Sep 6, 2024

Doubling Lifespan: Scientists Have Discovered a Key Cellular Mechanism That Could Control Longevity

Posted by in categories: biotech/medical, chemistry, life extension

UC Merced researchers have found that the protein OTUD6 can alter protein production in cells, potentially affecting lifespan and cancer, with future research aimed at exploiting this for therapeutic benefits.

Researchers at UC Merced used fruit flies to uncover a cellular process shared by many organisms, which could significantly advance the understanding of cancer and aging.

Department of Molecular and Cell Biology Professor Fred Wolf, then-graduate student Sammy Villa, and Genentech Vice President and Senior Fellow in Physiological Chemistry and Research Biology Vishva Dixit, discovered a mechanism that cells use to tune how much protein they make through the process of translating RNA into protein.

Page 30 of 2,709First2728293031323334Last