Toggle light / dark theme

‘Velcro’ DNA origami helps build nanorobotic Meccano

Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular robotics by developing custom-designed and programmable nanostructures using DNA origami.

This innovative approach has potential across a range of applications, from targeted drug delivery systems to responsive materials and energy-efficient optical signal processing. The method uses ‘DNA origami’, so-called as it uses the natural folding power of DNA, the building blocks of human life, to create new and useful biological structures.

As a proof-of-concept, the researchers made more than 50 nanoscale objects, including a ‘nano-dinosaur’, a ‘dancing robot’ and a mini-Australia that is 150 nanometres wide, a thousand times narrower than a human hair.

Synthetic Data Generation with Language Models: A Practical Guide

Originally published on Towards AI.

In the evolving landscape of artificial intelligence, data remains the fuel that powers innovation. But what happens when acquiring real-world data becomes challenging, expensive, or even impossible?

Enter synthetic data generation — a groundbreaking technique that leverages language models to create high-quality, realistic datasets. Consider training a language model on medical records without breaching privacy laws, or developing a customer interaction model without access to private conversation logs, or designing autonomous driving systems where collecting data on rare edge cases is nearly impossible. Synthetic data bridges gaps in data availability while maintaining the realism needed for effective AI training.

Warning of ‘Unprecedented Risks,’ Scientists Say Mirror Bacteria ‘Should Not Be Created’

“So when we’re talking about mirror-image life, it’s kind of like a ‘what if’ experiment: What if we constructed life with right-handed proteins instead of left-handed proteins? Something that would be very, very similar to natural life, but doesn’t exist in nature. We call this mirror-image life or mirror life,” explained to Michael Kay, a professor of biochemistry at University of Utah’s medical school.

Some scientists like Kay are interested in the medical possibilities of mirror-image therapeutics—which Kay says holds potential for treating chronic illness in a more cost-effective way—but both he and the authors of the recently published commentary are concerned about the potential threats posed by mirror bacteria.

“Our analysis suggests that mirror bacteria could broadly evade many immune defenses of humans, animals, and plants. Chiral interactions, which are central to immune recognition and activation in multicellular organisms, would be impaired with mirror bacteria,” according to the scientists.

Odd, slowly repeating radio bursts traced to red dwarf star

Microorganisms produce a wide variety of natural products that can be used as active ingredients to treat diseases such as infections or cancer. The blueprints for these molecules can be found in the microbes’ genes, but often remain inactive under laboratory conditions.

A team of researchers at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) has now developed a genetic method that leverages a natural bacterial mechanism for the transfer of genetic material and uses it for the production of new active ingredients. The team has published its results in the journal Science.

In contrast to humans, bacteria have the remarkable ability to exchange genetic material with one another. A well-known example with far-reaching consequences is the transfer of antibiotic resistance between bacterial pathogens. This gene transfer allows them to adapt quickly to different environmental conditions and is a major driver of the spread of antibiotic resistance.

Molecular motors put significant twists to DNA loops

Astrocytes are star-shaped glial cells in the central nervous system that support neuronal function, maintain the blood-brain barrier, and contribute to brain repair and homeostasis. The evolution of these cells throughout the progression of Alzheimer’s disease (AD) is still poorly understood, particularly when compared to that of neurons and other cell types.

Researchers at Massachusetts General Hospital, the Massachusetts Alzheimer’s Disease Research Center, Harvard Medical School and Abbvie Inc. set out to fill this gap in the literature.

Their paper, published in Nature Neuroscience, provides one of the most detailed accounts to date of how different astrocyte subclusters respond to AD across different brain regions and disease stages, providing valuable insights into the cellular dynamics of the disease.

Scientists develop material with almost perfect water repellency

Scientists from Karlsruhe Institute of Technology (KIT) and the Indian Institute of Technology Guwahati (IITG) have developed a surface material that repels water droplets almost completely. Using an entirely innovative process, they changed metal-organic frameworks (MOFs)—artificially designed materials with novel properties—by grafting hydrocarbon chains.

The resulting superhydrophobic (extremely water-repellent) properties are interesting for use as self-cleaning surfaces that need to be robust against environmental influences, such as on automobiles or in architecture. The study was published in the journal Materials Horizons.

MOFs () are composed of metals and organic linkers that form a network with empty pores resembling a sponge. Their volumetric properties—unfolding two grams of this material would yield the area of a football pitch—make them an interesting material in applications such as gas storage, carbon dioxide separation, or novel medical technologies.

Molecular insights unlock a targeted approach to cancer immunotherapy

Australian-led research is unlocking new ways for immunotherapy to better target cancer. Cancer immunotherapy has revolutionized treatment for patients, whereby the body’s own immune system is harnessed to destroy cancer cells.

Typically, several molecules restrain the ability of T cells to target cancer cells and developing approaches to limit this restraining effect can lead to improved effectiveness of cancer immunotherapy.

Research published in Science Immunology has determined the structure of how an inhibitory molecule, LAG3, interacts with its main ligand and provides a new targeted approach to improving the effectiveness of immunotherapy for certain forms of cancer.

Signal Peptide Harnesses Exosomes for Precise Drug Delivery

The new study focused on Wnt7a, a protein essential for development, growth, regeneration, and cancer. “Researchers have been trying for years to turn Wnt7a into a muscle regeneration drug, but it is very difficult to deliver Wnt7a throughout the body, since it is covered in fatty molecules that don’t mix well with body fluid,” said first author Uxia Gurriaran-Rodriguez, PhD, Center for Cooperative Research in Biosciences (CIC bioGUNE).

Wnt7a was identified as a long-distance signaling molecule found on the surface of exosomes following muscle injury. Due to its many hydrophobic components, it was necessary to isolate smaller portions of the Wnt7a protein to determine the smallest functional segment required for attachment to an exosome. Through selective deletion of various components of Wnt7a, the team found the smallest functional segment needed for exosome binding.

This segment turned out to be an 18-amino-acid sequence, which the team termed Exosome Binding Peptide (EBP). The team found that “addition of EBP to an unrelated protein directed secretion on extracellular vesicles.” EBP binds to coatomer proteins, proteins that coat membrane-bound transport vesicles, on exosomes, and through follow-up structural experiments, the team determined this is a conserved function across the Wnt protein family. EBP can be used to direct other proteins to exosomes, effectively allowing for targeted delivery of exosomes and their contents.

A new twist: The molecular machines that loop chromosomes also twist DNA

Scientists from the Kavli Institute of Delft University of Technology and the IMP Vienna Biocenter have discovered a new property of the molecular motors that shape our chromosomes. While six years ago they found that these so-called SMC motor proteins make long loops in our DNA, they have now discovered that these motors also put significant twists into the loops that they form.

These findings help us better understand the structure and function of our chromosomes. They also provide insight into how disruption of twisted DNA looping can affect health—for instance, in developmental diseases like “cohesinopathies.” The scientists published their findings in Science Advances.

Imagine trying to fit two meters of rope into a space much smaller than the tip of a needle—that’s the challenge every cell in your body faces when packing its DNA into its tiny nucleus. To achieve this, nature employs ingenious strategies, like twisting the DNA into coils of coils, so-called “supercoils” and wrapping it around special proteins for compact storage.

Breakthrough Study: Natural Compound Could Counter Opioid Addiction Without Sacrificing Pain Relief

Boosting the endocannabinoid 2-AG in the brain can counteract opioid addiction while preserving their pain relief, a Weill Cornell Medicine study finds. This approach, tested in mice using the chemical JZL184, may lead to safer treatments for pain management.

The natural enhancement of chemicals produced by the body, known as endocannabinoids, may mitigate the addictive properties of opioids like morphine and oxycodone while preserving their pain-relieving effects, according to researchers from Weill Cornell Medicine in collaboration with The Center for Youth Mental Health at NewYork-Presbyterian. Endocannabinoids interact with cannabinoid receptors found throughout the body, which play a role in regulating functions such as learning and memory, emotions, sleep, immune response, and appetite.

Opioids prescribed to control pain can become addictive because they not only dull pain, but also produce a sense of euphoria. The preclinical study, published recently in the journal Science Advances, may lead to a new type of therapeutic that could be taken with an opioid regimen to only reduce the reward aspect of opioids.