Toggle light / dark theme

How Is Cell Death Essential to Life?

Death might seem like a pure loss, the disappearance of what makes a living thing distinct from everything else on our planet. But zoom in closer, to the cellular level, and it takes on a different, more nuanced meaning. There is a challenge in simply defining what makes an individual cell alive or dead. Scientists today are working to understand the various ways and reasons that cells disappear, and what these processes mean to biological systems. In this episode, cellular biologist Shai Shaham talks to Steven Strogatz about the different forms of cell death, their roles in evolution and disease, and why the right kinds and patterns of cell death are essential to our development and well-being.

Listen on Apple Podcasts, Spotify, TuneIn or your favorite podcasting app, or you can stream it from Quanta.

Prevention and screening outpace treatment advances for averting death from five cancer types, study reveals

Improvements in cancer prevention and screening have averted more deaths from five cancer types combined over the past 45 years than treatment advances, according to a modeling study led by researchers at the National Institutes of Health (NIH).

The study, published Dec. 5, 2024, in JAMA Oncology, looked at deaths from breast, cervical, colorectal, lung, and prostate cancer that were averted by the combination of prevention, , and advances.

The researchers focused on these five cancers because they are among the most common causes of cancer deaths and strategies exist for their prevention, early detection, and/or treatment. In recent years, these five cancers have made up nearly half of all new cancer diagnoses and deaths.

Algorithm analyzes multiple mammograms to improve breast cancer risk prediction

A new study from Washington University School of Medicine in St. Louis describes an innovative method of analyzing mammograms that significantly improves the accuracy of predicting the risk of breast cancer development over the following five years.

Using up to three years of previous mammograms, the new method identified individuals at high risk of developing 2.3 times more accurately than the standard method, which is based on questionnaires assessing clinical risk factors alone, such as age, race and family history of breast cancer.

The study is published Dec. 5 in JCO Clinical Cancer Informatics.

Alignment of Cells Affects Secondary Tumor Growth

Cell–cell alignment and a background of stationary cells together shape the emergence of cellular clusters in a primary tumor.

In a cancer patient, tumor cells that circulate throughout the body in clusters pose a greater threat of metastasis than those that circulate individually. Those clusters are thought to come together while the cells are still within the primary tumor, but researchers still don’t understand the formation mechanism. Quirine Braat at Eindhoven University of Technology in the Netherlands and her colleagues have now used computer simulations to identify some of the factors at play [1].

The team used a computational lattice model of cells and tissues (the cellular Potts model) to examine a 2D layer of two types of cells—one motile (able to move) and one nonmotile. The tendency of the motile cells to migrate was represented in the model by an external force applied to each one. For a given cell, this force could align strongly or weakly with the forces acting on its neighboring cells.

Polarization photodetector that mimics desert ant offers pathway for more sensitive, miniaturized imaging systems

Polarization photodetectors (pol-PDs) have widespread applications in geological remote sensing, machine vision, and biological medicine. However, commercial pol-PDs usually require bulky and complicated optical components and are difficult to miniaturize and integrate.

Chinese researchers have made important progress in this area by developing an on-chip integrated polarization .

This study, published in Science Advances on Dec. 4, was conducted by Prof. Li Mingzhu’s group from the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences.

Bioprinting technique creates functional tissue 10x faster

Three-dimensional (3D) printing isn’t just a way to produce material products quickly. It also offers researchers a way to develop replicas of human tissue that could be used to improve human health, such as building organs for transplantation, studying disease progression and screening new drugs. While researchers have made progress over the years, the field has been hampered by limited existing technologies unable to print tissues with high cell density at scale.

A team of researchers from Penn State have developed a novel bioprinting technique that uses spheroids, which are clusters of cells, to create complex tissue. This new technique improves the precision and scalability of tissue fabrication, producing tissue 10-times faster than existing methods. It further opens the door to developing functional tissues and organs and progress in the field of regenerative medicine, the researchers said.

They published their findings in Nature Communications.

Giant cyborg cockroaches could be the search and rescue workers of the future

Fitzgerald says cyborg search and rescue beetles or cockroaches might be able to help in disaster situations by finding and reporting the location of survivors and delivering lifesaving drugs to them before human rescuers can get there.

But first, the Australian researchers must master the ability to direct the movements of the insects, which could take a while. Fitzgerald says that although the work might seem futuristic now, in a few decades, cyborg insects could be saving lives.

He’s not the only roboticist creating robots from living organisms. Academics at the California Institute of Technology (Caltech), for example, are implanting electronic pacemakers into jellyfish to control their swimming speed. They hope the bionic jellies could help collect data about the ocean far below the surface.

Brain Age Models Offer Insights into Early Development Trajectories

Summary: A new study highlights how brain age models can track healthy infant development and reveal environmental influences. Using MRI data from over 600 term and preterm infants, researchers trained machine learning models to predict brain age and identify gaps between predicted and actual ages.

These brain age gaps can indicate whether an infant’s development is faster or slower than expected, with maternal age emerging as a significant influencing factor. Advanced brain development was linked to better cognitive abilities but poorer emotional regulation, suggesting that following normative developmental trajectories may be ideal.

Building a “Google Maps” for Biology: Human Cell Atlas Revolutionizes Medicine

New research from the Human Cell Atlas offers insights into cell development, disease mechanisms, and genetic influences, enhancing our understanding of human biology and health.

The Human Cell Atlas (HCA) consortium has made significant progress in its mission to better understand the cells of the human body in health and disease, with a recent publication of a Collection of more than 40 peer-reviewed papers in Nature and other Nature Portfolio journals.

The Collection showcases a range of large-scale datasets, artificial intelligence algorithms, and biomedical discoveries from the HCA that are enhancing our understanding of the human body. The studies reveal insights into how the placenta and skeleton form, changes during brain maturation, new gut and vascular cell states, lung responses to COVID-19, and the effects of genetic variation on disease, among others.

Breakthrough in Nanotechnology Unlocks Atomic Precision for Medicine and Energy

Physicists are getting closer to controlling single-molecule chemical reactions – could this shape the future of pharmaceutical research?

A groundbreaking study demonstrates control over atomic-level matter through nanotechnology. By leveraging the precision of scanning tunneling microscopy, researchers have shown how competing chemical reaction outcomes can be influenced by manipulating energy levels. This advancement allows for targeted reactions, such as those needed for drug synthesis, while reducing unwanted byproducts.

Controlling matter at the atomic level.