Toggle light / dark theme

NEW Glaucoma Treatment & REVERSE Aging Molecules Jul 2024 Update | Dr David Sinclair

Yes, we wish it were quicker too.


In this short video Dr. David Sinclair discusses the progress made with the new glaucoma treatment and upcoming human trials. Also, the timeline for potential availability of the treatment and reverse aging molecules which his company Metrobiotech is working on.

Please note that the links below are affiliate links, so we receive a small commission when you purchase a product through the links. Thank you for your support!
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
đŸ”¶ Nuchido Time+ Supplement FIRST ORDER 20% OFF Code : REVERSEAGING20
Restore Our Cells Ability To Make NAD Like When We Were Young https://www.nuchido.com/REVERSEAGING

💧Fatty15 Supplement 20% OFF Discount Link *~ https://fatty15.com/SFGBQD7P

~*~ ProHealth, DoNotAge, RenueByScience~*~ Discount Coupon CODE: REVERSE

Caught in the actinium: New research could help design better cancer treatments

The element actinium was first discovered at the turn of the 20th century, but even now, nearly 125 years later, researchers still don’t have a good grasp on the metal’s chemistry. That’s because actinium is only available in extremely small amounts and working with the radioactive material requires special facilities. But to improve emerging cancer treatments using actinium, researchers will need to better understand how the element binds with other molecules.

Revealing a master controller of development and ageing

University of Queensland researchers have unlocked crucial molecular secrets of ageing in cells, potentially paving the way to improve quality of life as people age.

The study decoded the process by which genes regulate how people mature as they grow and age, and was led by Dr Christian Nefzger from UQ’s Institute for Molecular Bioscience with key contributions from Dr Ralph Patrick and Dr Marina Naval-Sanchez.

Dr Nefzger said that until now the process of how genes change activity from birth to adulthood and into old age was largely unknown.

Treating the Gut-Brain Connection with B Vitamins to Treat Parkinson’s Disease

A study led by Nagoya University Graduate School of Medicine in Japan has revealed a link between gut microbiota and Parkinson’s disease (PD). The researchers found a reduction in the gut bacteria of genes responsible for synthesizing the essential B vitamins B2 and B7. They also identified a relationship between the lack of these genes and low levels of agents that help maintain the integrity of the intestinal barrier. This barrier prevents toxins from entering the bloodstream, which causes the inflammation seen in PD. Their findings, published in npj Parkinson’s Disease, suggest that treatment with B vitamins to address these deficiencies can be used to treat PD.

PD is characterized by a variety of physical symptoms that hinder daily activities and mobility, such as shaking, slow movement, stiffness, and balance problems. While the frequency of PD may vary between different populations, it is estimated to affect approximately 1–2% of individuals aged 55 years or older.

Various physiological processes are heavily influenced by the microorganisms found in the gut, which are collectively known as gut microbiota. In ideal conditions, gut microbiota produce SCFAs and polyamines, which maintain the intestinal barrier that prevents toxins entering the bloodstream. Toxins in the blood can be carried to the brain where they cause inflammation and affect neurotransmission processes that are critical for maintaining mental health.

Decoding the Enigma: Origins of Superconductivity in High-Temperature Cuprates

Superconductors are materials capable of conducting electricity without any resistance when they are cooled below a specific temperature known as the critical temperature. These materials are used in various applications such as power grids, maglev trains, and medical imaging equipment. High-temperature superconductors, which operate at higher critical temperatures than conventional superconductors, hold great promise for enhancing these technologies. Nonetheless, the underlying mechanisms of their superconductivity are not yet fully understood.

Copper oxides or cuprates, a class of high-temperature superconductors, exhibit superconductivity when electrons and holes (vacant spaces left behind by electrons) are introduced into their crystal structure through a process called doping. Interestingly, in the low-doped state, with less-than-optimal electrons required for superconductivity, a pseudogap ­­–a partial gap in the electronic structure– opens. This pseudogap is considered a potential factor in the origin of superconductivity in these materials.

Circadian Rhythm drives the Release of Important Immune Cells, study reveals

Helping to defend those tissues are innate lymphoid cells, or ILCs, which when faced with a threat, stimulate proteins called cytokines that further activate the immune system and control the intestinal microbiome.

These cells naturally diminish with aging or can be depleted by certain medical conditions.

ILCs are made inside bone marrow and circulate in the blood. But how are they activated to mobilize and travel to their target sites to replenish the depleted pool of tissue ILCs?