Toggle light / dark theme

Producing fake sound reflections that simulate the presence or absence of an object could allow the military to hide assets underwater.

A hologram plate simulates the presence of a three-dimensional object by reflecting the appropriate light waves. Now researchers have demonstrated an equivalent behavior with sound by precisely mimicking the acoustic pattern scattered from an object [1]. The technique could be useful in military efforts to hide or disguise underwater objects, or it may be useful in modifying the reflected sounds of objects so that they are easier to identify by people with impaired vision.

The sound waves reflected from an object can be used to reconstruct its position and shape, an idea routinely exploited in sonar and ultrasound imaging. In principle, using similar concepts, a cleverly produced pattern of scattered waves streaming out of a small region could signify that an object is present when it is not. Several recent attempts to realize such “acoustic cloning” have been unsuccessful because of limitations in recording the precise pattern of waves an object reflects, a necessary preliminary step.

An experimental vaccine against human papillomavirus—HPV—appears to be safe, and most importantly, benefits patients who develop a rare airway cancer that manifests as recurrent obstructive growths requiring dozens, sometimes, hundreds of surgeries over a lifetime to keep the tumors at bay.

The tiny phase 1 of only 15 patients has served as a proof of concept, demonstrating that recurrent respiratory papillomatosis, a cancerous disorder of the upper airways, can respond to therapeutic vaccination. The tumors are caused by either type 6 or type 11 human papillomavirus.

Writing in Science Translational Medicine, scientists at the Center for Immune-Oncology, a division of the U.S. National Cancer Institute in Bethesda, Maryland, tackled the problem of recurrent respiratory papillomatosis by testing a vaccine strategy designed to prevent tumor development. Dr. Scott M. Norberg, lead author of the research, writes that the evolving approach is aimed at providing a pathway for the prevention of a condition for which there is no cure.

Many Black Americans who are thought to have a high risk of developing kidney disease possess a protective genetic variant that nullifies the extra risk, a new study from Columbia researchers has found. The work is published in the journal Nature Communications.

The study found that high-risk people who carry this variant have a risk of developing kidney disease much closer to that of the general population.

The findings will have an immediate impact on , says study leader Simone Sanna-Cherchi, MD, associate professor of medicine at Columbia’s Vagelos College of Physicians and Surgeons.

Researchers at UT Southwestern Medical Center have developed a novel artificial intelligence (AI) model that analyzes the spatial arrangement of cells in tissue samples. This innovative approach, detailed in Nature Communications, has accurately predicted outcomes for cancer patients, marking a significant advancement in utilizing AI for cancer prognosis and personalized treatment strategies.

“Cell spatial organization is like a complex jigsaw puzzle where each cell serves as a unique piece, fitting together meticulously to form a cohesive tissue or organ structure. This research showcases the remarkable ability of AI to grasp these intricate spatial relationships among cells within tissues, extracting subtle information previously beyond human comprehension while predicting patient outcomes,” said study leader Guanghua Xiao, Ph.D., Professor in the Peter O’Donnell Jr. School of Public Health, Biomedical Engineering, and the Lyda Hill Department of Bioinformatics at UT Southwestern. Dr. Xiao is a member of the Harold C. Simmons Comprehensive Cancer Center at UTSW.

Tissue samples are routinely collected from patients and placed on slides for interpretation by pathologists, who analyze them to make diagnoses. However, Dr. Xiao explained, this process is time-consuming, and interpretations can vary among pathologists. In addition, the can miss subtle features present in pathology images that might provide important clues to a patient’s condition.

LJI scientists harness bioinformatics to predict how T cells may adapt to fighting the highly mutated Pirola variant.

In August, researchers detected a new SARS-CoV-2 “variant of concern” in patients in Israel and Denmark. Since then, this variant, dubbed BA.2.86 or “Pirola,” has made its way around the globe. The Pirola variant has raised alarms because it is highly mutated. In fact, Pirola is as mutated as the Omicron variant was, compared with the early SARS-CoV-2 variant included in the original vaccinations.

As Pirola spreads, researchers at La Jolla Institute for Immunology (LJI) are investigating whether COVID-19 vaccines (or previous SARS-CoV-2 exposure) can still protect people from severe disease.

PET scans of people with mild cognitive impairment detected lower levels of serotonin, the brain chemical associated with positive mood, compared to those without it.

Comparing PET scans of more than 90 adults with and without mild cognitive impairment (MCI), Johns Hopkins Medicine researchers say relatively lower levels of the so-called “happiness” chemical, serotonin, in parts of the brain of those with MCI may play a role in memory problems including Alzheimer’s disease.

The findings, recently published in the Journal of Alzheimer’s Disease, lend support to growing evidence that measurable changes in the brain happen in people with mild memory problems long before an Alzheimer’s diagnosis, and may offer novel targets for treatments to slow or stop disease progression.

Researchers at the Francis Crick Institute, UCL, and MSD have identified a potential treatment target for a genetic type of epilepsy.

Developmental and epileptic encephalopathies are rare types of epilepsy that start in early childhood. One of the most common types of genetic epilepsy, CDKL5 deficiency disorder (CDD), causes seizures and impaired development. Children are currently treated with generic antiepileptic drugs, as there aren’t yet any disease-targeting medications for this disorder.

CDD involves losing the function of a gene producing the CDKL5 enzyme, which phosphorylates proteins, meaning it adds an extra phosphate molecule to alter their function. Until now, researchers have not been sure how genetic mutations in CDKL5 cause CDD.

Summary: Researchers created a revolutionary system that can non-invasively convert silent thoughts into text, offering new communication possibilities for people with speech impairments due to illnesses or injuries.

The technology uses a wearable EEG cap to record brain activity and an AI model named DeWave to decode these signals into language. This portable system surpasses previous methods that required invasive surgery or cumbersome MRI scanning, achieving state-of-the-art EEG translation performance.

It shows promise in enhancing human-machine interactions and in aiding those who cannot speak, with potential applications in controlling devices like bionic arms or robots.