Menu

Blog

Archive for the ‘biotech/medical’ category: Page 633

Mar 16, 2023

The Impact of Ions on DNA

Posted by in categories: biotech/medical, computing, genetics, health

A study of the electron excitation response of DNA to proton radiation has elucidated mechanisms of damage incurred during proton radiotherapy.

Radiobiology studies on the effects of ionizing radiation on human health focus on the deoxyribonucleic acid (DNA) molecule as the primary target for deleterious outcomes. The interaction of ionizing radiation with tissue and organs can lead to localized energy deposition large enough to instigate double strand breaks in DNA, which can lead to mutations, chromosomal aberrations, and changes in gene expression. Understanding the mechanisms behind these interactions is critical for developing radiation therapies and improving radiation protection strategies. Christopher Shepard of the University of North Carolina at Chapel Hill and his colleagues now use powerful computer simulations to show exactly what part of the DNA molecule receives damaging levels of energy when exposed to charged-particle radiation (Fig. 1) [1]. Their findings could eventually help to minimize the long-term radiation effects from cancer treatments and human spaceflight.

The interaction of radiation with DNA’s electronic structure is a complex process [2, 3]. The numerical models currently used in radiobiology and clinical radiotherapy do not capture the detailed dynamics of these interactions at the atomic level. Rather, these models use geometric cross-sections to predict whether a particle of radiation, such as a photon or an ion, crossing the cell volume will transfer sufficient energy to cause a break in one or both of the DNA strands [46]. The models do not describe the atomic-level interactions but simply provide the probability that some dose of radiation will cause a population of cells to lose their ability to reproduce.

Mar 16, 2023

A system integrating echo state graph neural networks and analogue random resistive memory arrays

Posted by in categories: biotech/medical, robotics/AI

Graph neural networks (GNNs) are promising machine learning architectures designed to analyze data that can be represented as graphs. These architectures achieved very promising results on a variety of real-world applications, including drug discovery, social network design, and recommender systems.

As graph-structured data can be highly complex, graph-based machine learning architectures should be designed carefully and effectively. In addition, these architectures should ideally be run on efficient hardware that support their computational demands without consuming too much power.

Continue reading “A system integrating echo state graph neural networks and analogue random resistive memory arrays” »

Mar 16, 2023

Controlling the degree of twist in nanostructured particles for the first time

Posted by in categories: biotech/medical, nanotechnology

Micron-sized “bow ties,” self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team led by the University of Michigan has shown.

The development opens the way for easily producing materials that interact with twisted light, providing new tools for machine vision and producing medicines.

While biology is full of twisted structures like DNA, known as chiral structures, the degree of twist is locked in—trying to change it breaks the structure. Now, researchers can engineer the degree of twist.

Mar 15, 2023

Our Gattaca Exclusive Confirmed By The Hollywood Reporter

Posted by in categories: biotech/medical, business, employment, genetics, law, robotics/AI, space travel, transhumanism

Our trusted and proven sources were correct once again, as just hours after we broke the news that a Gattaca series is in development at Showtime, The Hollywood Reporter confirmed our exclusive. One of our writers here at Giant Freakin Robot wrote just two weeks ago that the 1997 dystopian sci-fi classic would be perfect as a television series, and it’s amazing how quickly we went from hoping it would happen to confirming that it is. The new series will be coming from the creators of Homeland, Howard Gordan and Alex Gansa.

As noted in our initial report, this is not the first time the film, starring Ethan Hawke, Uma Thurman, and Jude Law, has been optioned as a series. Back in 2009, Sony attempted to turn the movie into a procedural from Gil Grant, a writer on 24 and NCIS. The underrated cult-classic movie is ideal for transforming into a prestige series on a premium network as its themes on transhumanism, genetic manipulation, and a stratified society have become more relevant as technology leaps forwards every year.

In Gattaca, eugenics separates society into “valids” and “in-valids,” even if genetic discrimination is illegal; that hasn’t stopped businesses from profiling, giving the best jobs to the former and only menial labor opportunities to the latter. Ethan Hawke plays Vincent, an in-valid with a heart defect that uses samples from Jude Law’s Jerome Morrow, a paralyzed Olympic champion swimmer that’s also a valid. Using the purloined DNA, Vincent cons his way into a job at Gattaca Aerospace Corporation, eventually being selected as a navigator for a trip to Saturn’s moon, Titan.

Mar 15, 2023

Could AI-powered object recognition technology help solve wheat disease?

Posted by in categories: bioengineering, biotech/medical, economics, health

A new University of Illinois project is using advanced object recognition technology to keep toxin-contaminated wheat kernels out of the food supply and to help researchers make wheat more resistant to fusarium head blight, or scab disease, the crop’s top nemesis.

“Fusarium head blight causes a lot of economic losses in wheat, and the associated toxin, deoxynivalenol (DON), can cause issues for human and animal health. The disease has been a big deterrent for people growing wheat in the Eastern U.S. because they could grow a perfectly nice crop, and then take it to the elevator only to have it get docked or rejected. That’s been painful for people. So it’s a big priority to try to increase resistance and reduce DON risk as much as possible,” says Jessica Rutkoski, assistant professor in the Department of Crop Sciences, part of the College of Agricultural, Consumer and Environmental Sciences (ACES) at Illinois. Rutkoski is a co-author on the new paper in the Plant Phenome Journal.

Increasing resistance to any traditionally means growing a lot of genotypes of the crop, infecting them with the disease, and looking for symptoms. The process, known in plant breeding as phenotyping, is successful when it identifies resistant genotypes that don’t develop symptoms, or less severe symptoms. When that happens, researchers try to identify the genes related to and then put those genes in high-performing hybrids of the crop.

Mar 15, 2023

Detect, bind and cut: Biomolecular action at the nanoscale

Posted by in categories: bioengineering, biotech/medical, nanotechnology

Researchers at Kanazawa University report in ACS Nano how high-speed atomic force microscopy can be used to study the biomolecular mechanisms underlying gene editing.

The DNA of prokaryotes—single-cell organisms, for example bacteria—is known to contain sequences that are derived from DNA fragments of viruses that infected the prokaryote earlier. These sequences, collectively referred to as CRISPR, for “clustered regularly interspaced short palindromic repeats,” play a major role in the antiviral defense system of bacteria, as they enable the recognition and subsequent neutralization of infecting viruses. The latter is done through the enzyme Cas9 (“CRISPR-associated protein 9”), a biomolecule that can locally unwind DNA, check for the existence of the CRISPR sequence and, when found, cut the DNA.

Continue reading “Detect, bind and cut: Biomolecular action at the nanoscale” »

Mar 15, 2023

Artificial pancreas improves blood sugar control for kids ages 2–6, study finds

Posted by in categories: biotech/medical, information science

An artificial pancreas originally developed at the University of Virginia Center for Diabetes Technology improves blood sugar control in children ages 2 to 6 with type 1 diabetes, according to a new study. Details of the clinical study and its findings have been published in the New England Journal of Medicine.

Trial participants using the artificial pancreas spent approximately three more hours per day in their target blood sugar range compared with participants in a who continued relying on the methods they were already using to manage their .

The Control-IQ system, manufactured by Tandem Diabetes Care, is a diabetes management device that automatically monitors and regulates . The artificial pancreas has an insulin pump that uses advanced control algorithms based on the person’s glucose monitoring information to adjust the insulin dose as needed.

Mar 15, 2023

Multi-state study reports COVID-19 mRNA vaccines protective during omicron BA.4/BA.5 predominance

Posted by in category: biotech/medical

A multi-state study from the U.S. Center for Disease Control and Prevention’s (CDC) VISION Network has found that first-generation COVID-19 mRNA vaccines were associated with protection against COVID-19 during periods of omicron BA.4/BA.5 predominance.

The new analysis found that mRNA vaccines were protective against COVID-19-associated hospitalization and ICU admission or in-hospital death and noted less during BA.4/BA.5 predominance compared to earlier omicron variants.

During BA.4/BA.5 predominance, estimated 3-dose vaccine effectiveness against hospitalization was 68 percent between 7-and 119-days post-vaccination. Vaccine effectiveness against hospitalization decreased to 36 percent by 120 days or more post-vaccination.

Mar 15, 2023

New technology maps where and how cells read their genome

Posted by in categories: biotech/medical, genetics

A new study published in Nature reports that a technology known as spatial omics can be used to map simultaneously how genes are switched on and off and how they are expressed in different areas of tissues and organs. This improved technology, developed by researchers at Yale University and Karolinska Institutet, could shed light on the development of tissues, as well as on certain diseases and how to treat them.

Almost all cells in the body have the same set of genes and can in principle become any kind of cell. What distinguishes the cells is how the genes in our DNA are used. In recent years, spatial omics have given us a deeper understanding of how cells read the genome in precise locations in tissues. Now, researchers have further evolved this technology to increase knowledge of how tissues develop and how different diseases arise.

A key part of the study is the researchers’ ability to spatially map simultaneously two crucial components of our genetic makeup, the epigenome and the . The epigenome controls the switching mechanisms that turn genes on and off in individual , whereas the transcriptome is the result of those gene expressions and what makes each cell unique.

Mar 15, 2023

MS: Mediterranean diet may reduce cognitive impairment

Posted by in categories: biotech/medical, neuroscience

Following a Mediterranean diet may lower the risk for memory and thinking problems in people with multiple sclerosis (MS), a new study suggests.

Page 633 of 2,688First630631632633634635636637Last