Menu

Blog

Archive for the ‘biotech/medical’ category: Page 638

Jul 9, 2023

New study shows circulating anti-insulin CD4 T cells reflect progression of anti-islet immunity

Posted by in category: biotech/medical

Type 1 diabetes (T1D) is an autoimmune disease linked to helper T-cell recognition in non-obese diabetic (NOD) mice and humans. Moreover, T1D affects the endocrine pancreas, thus causing patients to be dependent on insulin replacement therapy for the rest of their lives. Monitoring disease progression through peripheral blood sampling could provide insights into the immune-mediated mechanisms of T1D.

In a recent study published in Science Translational Medicine, researchers profile antigen-specific helper clusters of differentiation 4-positive (CD4+) T-lymphocytes to determine anti-islet autoimmunity among mice and humans.

Jul 9, 2023

How B-cells and androgens contribute to the development of PCOS

Posted by in categories: biotech/medical, genetics

Research on mu heavy chain knockout mice (MuMt-; Bnull), which are mice that are genetically incapable of producing mature B-cells, has suggested that B-cells amplify the metabolic effects of diseases, especially diabetes and insulin resistance. Since type 2 diabetes (T2D) and hyperthyroidism, both of which are autoimmune conditions, are strongly correlated with PCOS, scientists have attempted to investigate an autoimmune trigger for PCOS, which has remained unsuccessful.

Study findings

In the present study, researchers evaluate previously hypothesized factors associated with cyst formation and inflammation, which include B-cell frequency, hyperandrogenemia, and autoantibodies.

Jul 9, 2023

Duke University Developing Universal Flu Vaccine

Posted by in category: biotech/medical

With funds from national grants and private philanthropy, Duke University scientists are working to develop a universal flu vaccine that would last last much longer than the current flu vaccines.

Jul 9, 2023

Synthetic Evolution: Genetically Minimal Artificial Cells Prove “Life Finds a Way”

Posted by in categories: bioengineering, biotech/medical, education, evolution, genetics

Scientists discovered that a synthetic cell with a reduced genome could evolve as quickly as a normal cell. Despite losing 45% of its original genes, the cell adapted and demonstrated resilience in a laboratory experiment lasting 300 days, effectively showcasing that evolution occurs even under perceived limitations.

“Listen, if there’s one thing the history of evolution has taught us is that life will not be contained. Life breaks free. It expands to new territories, and it crashes through barriers painfully, maybe even dangerously, but… ife finds a way,” said Ian Malcolm, Jeff Goldblum’s character in Jurassic.

The Jurassic period is a geologic time period and system that spanned 56 million years from the end of the Triassic Period about 201.3 million years ago to the beginning of the Cretaceous Period 145 million years ago. It constitutes the middle period of the Mesozoic Era and is divided into three epochs: Early, Middle, and Late. The name “Jurassic” was given to the period by geologists in the early 19th century based on the rock formations found in the Jura Mountains, which were formed during the Jurassic period.

Jul 9, 2023

Scientists soften hair follicles using microRNA to regrow hair

Posted by in category: biotech/medical

Just as stiffened joints can hinder mobility, it appears the stem cells of hair follicles can also grow stiff, obstructing hair growth.

Jul 9, 2023

Google’s medical AI chatbot is already being tested in hospitals

Posted by in categories: biotech/medical, robotics/AI

The Mayo Clinic has reportedly been testing the system since April.

Google’s Med-PaLM 2, an AI tool designed to answer questions about medical information, has been in testing at the Mayo Clinic research hospital, among others, since April, The Wall Street Journal.

Continue reading “Google’s medical AI chatbot is already being tested in hospitals” »

Jul 9, 2023

Researchers successfully implanted the first artificial tubular muscle in vivo

Posted by in categories: biotech/medical, cyborgs

In January 2021, EPFL engineers announced in Advanced Science their concept of a novel cardiac assist device that is devoid of rigid metallic components. It consists of a soft, artificial muscle wrapped around the aorta that can constrict and dilate the vessel, ultimately enhancing the aorta’s natural function and aiding the heart to pump blood to the rest of the body.

Now June 2021, EPFL engineers led by Yves Perriard of the Laboratory of Integrated Actuators in collaboration with University of Bern, have successfully implanted their first artificial tubular muscle, in vivo, in a pig. During the 4-hour long operation, their cardiac assist device maintained 24 000 pulsations, of which 1,500 were activated artificially by the augmented aorta.

More information with downloadable pdf:

Continue reading “Researchers successfully implanted the first artificial tubular muscle in vivo” »

Jul 9, 2023

When it comes to health care, will AI be helpful or harmful?

Posted by in categories: biotech/medical, health, information science, robotics/AI

Artificial intelligence algorithms, such as the sophisticated natural language processor ChatGPT, are raising hopes, eyebrows and alarm bells in multiple industries. A deluge of news articles and opinion pieces, reflecting both concerns about and promises of the rapidly advancing field, often note AI’s potential to spread misinformation and replace human workers on a massive scale. According to Jonathan Chen, MD, PhD, assistant professor of medicine, the speculation about large-scale disruptions has a kernel of truth to it, but it misses another element when it comes to health care: AI will bring benefits to both patients and providers.

Chen discussed the challenges with and potential for AI in health care in a commentary published in JAMA on April 28. In this Q&A, he expands on how he sees AI integrating into health care.

The algorithms we’re seeing emerge have really popped open Pandora’s box and, ready or not, AI will substantially change the way physicians work and the way patients interact with clinical medicine. For example, we can tell our patients that they should not be using these tools for medical advice or self-diagnosis, but we know that thousands, if not millions, of people are already doing it — typing in symptoms and asking the models what might be ailing them.

Jul 9, 2023

Newfound CRISPR-Like System In Animals Could Be Used To Manipulate Human Genomes

Posted by in categories: biotech/medical, genetics

A genetic editing system similar to CRISPR-Cas9 has been uncovered for the first time in eukaryotes – the group of organisms that include fungi, plants, and animals. The system, based on a protein called Fanzor, can be guided to precisely target and edit sections of DNA, and that could open up the possibility of its use as a human genome editing tool.

The research team, led by Professor Feng Zhang at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard, began to suspect that Fanzor proteins might act as nucleases – enzymes that can chop up nucleic acids, like DNA – during a previous investigation.

Continue reading “Newfound CRISPR-Like System In Animals Could Be Used To Manipulate Human Genomes” »

Jul 9, 2023

Machine learning enables accurate electronic structure calculations at large scales for material modeling

Posted by in categories: biotech/medical, information science, robotics/AI

The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research, such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies.

Researchers from the Center for Advanced Systems Understanding (CASUS) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Görlitz, Germany, and Sandia National Laboratories in Albuquerque, New Mexico, U.S., have now pioneered a machine learning–based simulation method that supersedes traditional electronic structure simulation techniques.

Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales. The work is published in the journal npj Computational Materials.

Page 638 of 2,808First635636637638639640641642Last