Toggle light / dark theme

Low mental health associated with worse outcomes after total hip arthroplasty

Low mental health associated with worse outcomes after total hip arthroplasty suggests a new study published in the Archives of Orthopaedic and Trauma Surgery.

Poor mental health is difficult to recognize and as a result, its association with recovery from total joint arthroplasty is difficult to assess. The purpose of this study was to investigate the relationship between overall mental health scores and outcomes in the early postoperative period following unilateral total hip arthroplasty (THA). This is a retrospective review of prospectively collected data involving 142 patients who underwent primary unilateral THA. Independent variables included patient demographics and preoperative Patient-Reported Outcomes Measurement Information System (PROMIS), Global Physical Health (GPH) and Global Mental Health (GMH) and Hip Disability and Osteoarthritis Outcome Score, Joint Replacement (HOOS JR) scores as well as diagnoses of depression or anxiety.

RSV shown to Infect Nerve Cells, cause Inflammation and Damage

Respiratory syncytial virus (RSV), a common infection in children and senior adults, can also infect nerve cells and trigger inflammation leading to nerve damage, according to a new Tulane University study.

RSV can cause mild symptoms such as coughing, sneezing and fever or lead to more severe conditions such as pneumonia or bronchiolitis.

But since the disease was first discovered in 1956, it has been thought to only infect the respiratory tract.

A new drug candidate can shrink kidney cysts

Autosomal dominant polycystic kidney disease (ADPKD), the most common form of polycystic kidney disease, can lead to kidney enlargement and eventual loss of function. The disease affects more than 12 million people worldwide, and many patients end up needing dialysis or a kidney transplant by the time they reach their 60s.

Researchers at MIT and Yale University School of Medicine have now found that a compound originally developed as a potential cancer treatment holds promise for treating ADPKD. The drug works by exploiting kidney cyst cells’ vulnerability to oxidative stress — a state of imbalance between damaging free radicals and beneficial antioxidants.

In a study employing two mouse models of the disease, the researchers found that the drug dramatically shrank kidney cysts without harming healthy kidney cells.

What 5000 Ancient Human Genomes Can Reveal About European

Originally published on Illumina News Center

Call it archaeology by other means. Rather than sifting through tons of dirt and carefully cataloguing human artifacts, Eske Willerslev and his colleagues have used Illumina NovaSeq Systems to sequence 5,000 ancient human genomes, revealing previously unseen historical nuance. This research tour de force, which is being published this month in four papers in the journal Nature, offers a rich view of early human migrations, mating habits, and disease variants, and their impact on modern Europeans.

“We wanted to sequence this ancient DNA so we could better understand human history,” says Willerslev, who is professor and director at the Centre of Excellence in GeoGenetics at the University of Copenhagen and the Prince Philip Professor of Ecology & Evolution at Cambridge University. “These results describe where we came from and why there’s so much variation in disease risk.”

Machine learning models teach each other to identify molecular properties

Biomedical engineers at Duke University have developed a new method to improve the effectiveness of machine learning models. By pairing two machine learning models, one to gather data and one to analyze it, researchers can circumvent limitations of the technology without sacrificing accuracy.

This new technique could make it easier for researchers to use machine learning algorithms to identify and characterize molecules for use in potential new therapeutics or other materials.

The research is published in the journal Artificial Intelligence in the Life Sciences.

Anti-CRISPR Proteins Can Regulate Cas3 Targeted Deletions

The type I CRISPR protein Cas3 works like Pac-Man, chomping away at a continuous stream of nucleotides with intrinsic activity for introducing targeted large deletions from a few hundred base pairs to as large as 200 kb. However, without the molecular equivalent to the four colored ghosts who chase and capture Pac-Man, the broad and unidirectional genome editing activity of Cas3 is essentially unregulated.

Yan Zhang, PhD, assistant professor in the department of biological chemistry at the University of Michigan Medical School, and her collaborators at Cornell University identified two anti-CRISPR proteins that can “turn off” Cas3, paving the way toward safer and better-controlled CRISPR applications.

The research article, “Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications,” was published in Molecular Cell.

Revolutionary Meta-Optical Technology Transforms Thermal Imaging

Researchers have created a novel technology utilizing meta-optical devices for thermal imaging. This method offers more detailed information about the objects being imaged, potentially expanding thermal imaging applications in autonomous navigation, security, thermography, medical imaging, and remote sensing.

“Our method overcomes the challenges of traditional spectral thermal imagers, which are often bulky and delicate due to their reliance on large filter wheels or interferometers,” said research team leader Zubin Jacob from Purdue University. “We combined meta-optical devices and cutting-edge computational imaging algorithms to create a system that is both compact and robust while also having a large field of view.”

In Optica, Optica Publishing Group’s journal for high-impact research, the authors describe their new spectro-polarimetric decomposition system, which uses a stack of spinning metasurfaces to break down thermal light into its spectral and polarimetric components. This allows the imaging system to capture the spectral and polarization details of thermal radiation in addition to the intensity information that is acquired with traditional thermal imaging.