Menu

Blog

Archive for the ‘biotech/medical’ category: Page 762

Mar 8, 2023

Cyborg technology analyzes the functional maturation of stem-cell derived heart tissue

Posted by in categories: bioengineering, biotech/medical, cyborgs

Research in animal models has demonstrated that stem-cell derived heart tissues have promising potential for therapeutic applications to treat cardiac disease. But before such therapies are viable and safe for use in humans, scientists must first precisely understand on the cellular and molecular levels which factors are necessary for implanted stem-cell derived heart cells to properly grow and integrate in three dimensions within surrounding tissue.

New findings from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) make it possible for the first time to monitor the functional development and maturation of cardiomyocytes—the responsible for regulating the heartbeat through synchronized —on the single-cell level using -embedded . The devices—which are flexible, stretchable, and can seamlessly integrate with living cells to create “cyborgs”—are reported in a Science Advances paper.

“These mesh-like nanoelectronics, designed to stretch and move with growing tissue, can continuously capture long-term activity within individual stem-cell derived cardiomyocytes of interest,” says Jia Liu, co-senior author on the paper, who is an assistant professor of bioengineering at SEAS, where he leads a lab dedicated to bioelectronics.

Mar 8, 2023

Newly discovered enzyme that turns air into electricity, providing a new clean source of energy

Posted by in category: biotech/medical

Australian scientists have discovered an enzyme that converts air into energy. The finding, published today in the journal Nature, reveals that this enzyme uses the low amounts of the hydrogen in the atmosphere to create an electrical current. This finding opens the way to create devices that literally make energy from thin air.

The research team, led by Dr. Rhys Grinter, Ph.D. student Ashleigh Kropp, and Professor Chris Greening from the Monash University Biomedicine Discovery Institute in Melbourne, Australia, produced and analyzed a -consuming enzyme from a common soil bacterium.

Recent work by the team has shown that many bacteria use hydrogen from the atmosphere as an energy source in nutrient-poor environments. “We’ve known for some time that bacteria can use the trace hydrogen in the air as a source of energy to help them grow and survive, including in Antarctic soils, volcanic craters, and the deep ocean” Professor Greening said. “But we didn’t know how they did this, until now.”

Mar 8, 2023

CDR Dr. Jean-Paul Chretien — DARPA BTO — Regeneration, Resuscitation And Biothreat Countermeasures

Posted by in categories: biological, biotech/medical, genetics, health, military, policy, surveillance

Regeneration, Resuscitation & Biothreat Countermeasures — Commander Dr. Jean-Paul Chretien, MD, Ph.D., Program Manager, Biological Technology Office, DARPA


Commander Dr. Jean-Paul Chretien, MD, Ph.D. (https://www.darpa.mil/staff/cdr-jean-paul-chretien) is a Program Manager in the Biological Technology Office at DARPA, where his research interests include disease and injury prevention, operational medicine, and biothreat countermeasures. He is also responsible for running the DARPA Triage Challenge (https://triagechallenge.darpa.mil/).

Continue reading “CDR Dr. Jean-Paul Chretien — DARPA BTO — Regeneration, Resuscitation And Biothreat Countermeasures” »

Mar 8, 2023

Sickle cell disease is now curable, but the treatment is unaffordable

Posted by in categories: bioengineering, biotech/medical

CRISPR gene editing has made it possible to cure sickle cell disease, which affects millions worldwide, but most people with the condition won’t be able to afford the cost of the treatment.

By Michael Le Page

Mar 8, 2023

Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish

Posted by in categories: bioengineering, biotech/medical, chemistry, computing, neuroscience

Recent advances in human stem cell-derived brain organoids promise to replicate critical molecular and cellular aspects of learning and memory and possibly aspects of cognition in vitro. Coining the term “organoid intelligence” (OI) to encompass these developments, we present a collaborative program to implement the vision of a multidisciplinary field of OI. This aims to establish OI as a form of genuine biological computing that harnesses brain organoids using scientific and bioengineering advances in an ethically responsible manner. Standardized, 3D, myelinated brain organoids can now be produced with high cell density and enriched levels of glial cells and gene expression critical for learning. Integrated microfluidic perfusion systems can support scalable and durable culturing, and spatiotemporal chemical signaling.

Mar 8, 2023

AI accurately identifies normal and abnormal chest X-rays

Posted by in categories: biotech/medical, robotics/AI

An artificial intelligence (AI) tool can accurately identify normal and abnormal chest X-rays in a clinical setting, according to a study published in Radiology.

Chest X-rays are used to diagnose a wide variety of conditions to do with the heart and lungs. An abnormal chest X-ray can be an indication of a range of conditions, including cancer and chronic lung diseases.

An AI tool that can accurately differentiate between normal and abnormal chest X-rays would greatly alleviate the heavy workload experienced by globally.

Mar 8, 2023

Modifying messenger RNA may provide a new target for Alzheimer’s disease

Posted by in categories: biotech/medical, neuroscience

Reducing the methylation of a key messenger RNA can promote migration of macrophages into the brain and ameliorate symptoms of Alzheimer’s disease in a mouse model, according to a new study publishing March 7 in the open access journal PLOS Biology by Rui Zhang of Air Force Medical University in Xian, Shaanxi, China. The results illuminate one pathway for entrance of peripheral immune cells into the brain, and may provide a new target for treatment of Alzheimer’s disease.

A presumed trigger for the development of Alzheimer’s disease is the accumulation of proteinaceous, extracellular amyloid-beta plaques in the brain. High levels of amyloid-beta in mice leads to neurodegeneration and cognitive symptoms reminiscent of human Alzheimer’s disease, and reduction of amyloid-beta is a major goal in development of new treatments.

One potential pathway for getting rid of amyloid-beta is the of blood-derived into the brain, and their maturation into macrophages, which, along with resident microglia, can consume amyloid-beta. That migration is a complex phenomenon controlled by multiple interacting players, but a potentially important one is the methylation of messenger RNA within the cells.

Mar 7, 2023

How high altitude changes your body’s metabolism

Posted by in category: biotech/medical

Compared to those of us who live at sea level, the 2 million people worldwide who live above 4,500 meters (or 14,764 feet) of elevation—about the height of Mount Rainier, Mount Whitney, and many Colorado and Alaska peaks—have lower rates of metabolic diseases such as diabetes, coronary artery disease, hypercholesterolemia, and obesity.

Now, researchers at Gladstone Institutes have shed light on this phenomenon. They showed how chronically , such as those experienced at , rewire how mice burn sugars and fats. The work, published in the journal Cell Metabolism, not only helps explain the metabolic differences of people who live at high altitude, but could also lead to new treatments for metabolic disease.

“When an organism is exposed to chronically low levels of , we found that different organs reshuffle their fuel sources and their energy-producing pathways in various ways,” says Gladstone Assistant Investigator Isha Jain, Ph.D., senior author of the new study. “We hope these findings will help us identify metabolic switches that might be beneficial for metabolism even outside of low-oxygen environments.”

Mar 7, 2023

Null result in nicotinamide (vitamin B3) skin cancer trial of organ-transplant recipients

Posted by in category: biotech/medical

A one-year, placebo-controlled trial of oral nicotinamide (vitamin B3) therapy by the University of Sydney did not lead to lower rates of skin cancer in organ transplant recipients. The result is in striking contrast to a previous trial in which oral nicotinamide was concluded to be effective in reducing the rates of new nonmelanoma skin cancers and actinic keratoses in high-risk patients.

In the previous trial, “A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention,” participants were ineligible if they were immunosuppressed. Results showed an estimated 23% lower overall rate of new nonmelanoma skin cancers, with similar reductions of both new basal-cell and squamous-cell carcinomas. Interestingly, the previous trial found five rare, more aggressive carcinomas (two morphoeic, three poorly differentiated) in the nicotinamide group, while the placebo control had zero.

Transplant recipients are commonly given immunosuppressant drugs to prevent the body’s immune system from attacking the new organ tissues. These patients are approximately 100 times more likely than the to develop , according to a Swedish study. A higher risk of developing combined with lower survival rates means transplant patients urgently need a safe and effective way to lessen the risk.

Mar 7, 2023

A wearable device that records single-neuron activity while humans are walking

Posted by in categories: biotech/medical, neuroscience, wearables

New technologies can greatly advance research in various fields, including medicine and neuroscience. In recent years, for instance, engineers have created increasingly sophisticated devices to record brain activity and other biological signals with high precision.

A multi-disciplinary research team at University of California, Los Angeles (UCLA) and other institutes in the U.S. have recently developed the Neuro-stack, a new wearable technology that can record the activity of single neurons in the as a human being is walking or moving. This device, presented in a paper published in Nature Neuroscience, could help to gather valuable insight about neuronal activity during walking, while also potentially improving treatments for brain disorders.

“Our study was motivated by the need for smaller size and more for clinical neuroscience,” Dejan Markovic, one of the researchers who carried out the study, told Medical Xpress. “Our primary objectives were to make a device that is small enough to be wearable, for mobile experiments, and to provide broadband recordings including local field potentials and single units.”

Page 762 of 2,811First759760761762763764765766Last