Toggle light / dark theme

Win free electronics gear and learn from the experts at Keysight here: https://www.keysight.com/us/en/events/keysight-world/live-fr…ering.html.

Watch this video ad free on Nebula: https://nebula.tv/videos/realengineering-the-insane-engineering-of-mri-machines.

Watch the next episode of Real Engineering 2 weeks early: https://nebula.tv/videos/realengineering-the-secret-invention-that-changed-ww2

Links to everything I do:
https://beacons.ai/brianmcmanus.

Get your Real Engineering shirts at: https://standard.tv/collections/real-engineering.

Credits:

The Y chromosome is the smallest chromosome, and holds the least amount of genes, but scientists are still learning about all of its biological functions. Research has shown that many men start to lose Y chromosomes in blood cells as they get older, and this phenomenon has been linked to some disorders including heart disease and now, cancer. Some studies have suggested that the loss of the Y chromosome may help explain why men tend to die at slightly younger ages compared to women, or why there are sex differences in some types of cancer… Two new studies reported in Nature have explored the link between cancer and the loss of the Y chromosome.

One study used a mouse model to show that a specific gene on the Y chromosome known as KDM5D increases the chance that some types of colorectal cancer will metastasize. The other research report showed that when some cells lose the Y chromosome, bladder tumors are better at evading the immune system, and the risk of aggressive bladder cancer increases.

In a recent study published in the European Journal of Nutrition, scientists investigate the association between diet and cardiometabolic multimorbidity risk among British men between the ages of 60 and 79. To this end, consuming more seafood and fish was linked to a lower risk of first cardiometabolic disease transitioning to cardiometabolic multimorbidity.

Study: Prospective associations between diet quality, dietary components, and risk of cardiometabolic multimorbidity in older British men. Image Credit: fizkes / Shutterstock.com.

People who owned black-and-white television sets until the 1980s didn’t know what they were missing until they got a color TV. A similar switch could happen in the world of genomics as researchers at the Berlin Institute of Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB) have developed a technique called Genome Architecture Mapping (“GAM”) to peer into the genome and see it in glorious technicolor. GAM reveals information about the genome’s spatial architecture that is invisible to scientists using solely Hi-C, a workhorse tool developed in 2009 to study DNA interactions, reports a new study in Nature Methods by the Pombo lab.

“With a black-and-white TV, you can see the shapes but everything looks gray,” says Professor Ana Pombo, a and head of the Epigenetic Regulation and Chromatin Architecture lab. “But if you have a color TV and look at flowers, you realize that they are red, yellow and white and we were unaware of it. Similarly, there’s also information in the way the genome is folded in three-dimensions that we have not been aware of.”

Understanding DNA organization can reveal the basis of health and disease. Our cells pack a 2-meter-long genome into a roughly 10 micrometer-diameter nucleus. The packaging is done precisely so that regulatory DNA comes in contact with the right genes at the right times and turns them on and off. Changes to the three-dimensional configuration can disrupt this process and cause disease.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

At-Home Blood Testing (SiPhox Health): https://getquantify.io/mlustgarten.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Insects, with their remarkable ability to undergo complete metamorphosis, have long fascinated scientists seeking to understand the underlying genetic mechanisms governing this transformative process.

Now, a recent study conducted by the Institute for Evolutionary Biology (IBE, CSIC-UPF) and the IRB Barcelona has shed light on the crucial role of three genes – Chinmo, Br-C and E93 – in orchestrating the stages of insect development. Published in eLife, this research provides valuable insights into the evolutionary origins of metamorphosis and sheds new light on the role of these genes in growth, development and cancer regulation [1].

Longevity. Technology: Chinmo might sound like a Pokémon character, but the truth is much more interesting. Conserved throughout the evolution of insects, scientists think it, and the more conventionally-named Br-C and E93, could play a key role in the evolution of metamorphosis, acting as the hands of the biological clock in insects. A maggot is radically different from the fly into which it changes – could understanding and leveraging the biology involved one day allow us to change cultured skin cells into replacement organs or to stop tumors in their early stages of formation? No, Dr Seth Brundle, you can buzz off.

This study demonstrates that AI can be incredibly effective in helping us identify new drug candidates – particularly at early stages of drug discovery and for diseases with complex biology or few known molecular targets.


A machine learning model has been trained to recognise the key features of chemicals with senolytic activity. It recently found three chemicals able to remove senescent cells without damaging healthy cells.

Molecular structure of oleandrin. Credit: Mplanine, CC BY-SA 4.0, via Wikimedia Commons.

Senescent cells, often referred to as “zombie cells”, are cells that have stopped dividing but remain metabolically active. These cells increase with age and secrete harmful substances that can lead to chronic inflammation and affect the function of nearby cells. This contributes to aging and various age-related diseases like heart disease, diabetes, Alzheimer’s, and certain cancers. Their elimination or reprogramming is a key focus of aging-related research.

That’s the ordinary matter of everyday life: your hair and clothes, your atoms and organs, the food you eat and the dogs that kiss you, the air and the sea, the Sun and the Moon. Everything we know — everything we see — is just 5% of everything in the Universe.

The remaining 95% of the Universe is stuff that we can’t see, don’t yet understand. An extraordinarily vast portion of the cosmos is still unknown. Despite the technological advancements of the last century, even with computers at our fingertips and the worldwide internet and space-based observatories mapping the far reaches of our Universe, there is still so much that we don’t understand.

We have grown leaps and bounds since the days of the ancient Greeks and Egyptians, even since Copernicus and Kepler. But in many ways, we are still novices playing with toy models seeking to understand the stars.

People who owned black-and-white television sets until the 1980s didn’t know what they were missing until they got a color TV. A similar switch could happen in the world of genomics as researchers at the Berlin Institute of Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB) have developed a technique called Genome Architecture Mapping (“GAM”) to peer into the genome and see it in glorious technicolor. GAM reveals information about the genome’s spatial architecture that is invisible to scientists using solely Hi-C, a workhorse tool developed in 2009 to study DNA interactions, reports a new study in Nature Methods by the Pombo lab.

With a black-and-white TV, you can see the shapes but everything looks grey. But if you have a color TV and look at flowers, you realize that they are red, yellow and white and we were unaware of it. Similarly, there’s also information in the way the genome is folded in three-dimensions that we have not been aware of.