Menu

Blog

Archive for the ‘biotech/medical’ category: Page 839

Oct 5, 2022

Inter-brain synchronization occurs without physical co-presence during cooperative online gaming

Posted by in categories: biotech/medical, entertainment, neuroscience

Increased inter-brain synchrony has been linked with social closeness (Kinreich et al., 2017), rapport (Nozawa et al., 2019), agreement (Richard et al., 2021), sense of joint agency (Shiraishi and Shimada, 2021), prosociality (Hu et al., 2017), similarity of flow states (Nozawa et al., 2021), shared meaning-making (Stolk et al., 2014), and cooperation (Cui et al., 2012; Toppi et al., 2016; Szymanski et al., 2017; Cheng et al., 2019). Phase-coupled brain stimulation has led to increased interpersonal synchrony (Novembre et al., 2017), as well as improved interpersonal learning (Pan et al., 2020b). Furthermore, preceding a learning task with synchronized physical activity led to both better rapport and increased inter-brain synchrony, although task performance was unaffected (Nozawa et al., 2019). Nonetheless, learning outcomes (Pan et al., 2020a) and team performance in a variety of tasks (Szymanski et al., 2017; Reinero et al., 2020) can be predicted with the amount of inter-brain synchrony occurring between interacting individuals. Even though collaboration is a dynamic phenomenon, previous studies reporting connections between positive social outcomes and inter-brain synchronization have not explored the temporal aspects of this phenomenon, as recently pointed out by Li et al. (2021). Their fNIRS study revealed differences in the time courses of inter-brain synchronization during two different cooperative tasks. The connection between temporal changes in inter-brain synchronization and the success of collaboration is, however, still not clear.

EEG and fNIRS allow freer movement and more natural interaction compared to magnetic imaging such as fMRI and MEG, arguably lending themselves most easily to actual interactive situations. However, interpersonal synchronization and mirroring between people engaged in social interaction involve quite fast timing precision. For example, participants’ movements were synchronized to less than 40 ms in the mirror game, in which participants improvise motion together (Noy et al., 2011). As EEG measures the electrical activity of the brain, it represents a faster changing signal than hemodynamic measurement, i.e. measures of blood flow, such as fNIRS. This makes EEG a suitable method for investigating fast changes in phase synchronization of oscillatory activity during dynamic social interaction, when taking into account the limitations of the method in regards to signal-to-noise ratio.

In this study, we wanted to investigate whether cooperative action of physically isolated participants would lead to inter-brain phase synchronization. We were especially interested in the temporal dynamics of inter-brain synchrony and its connection to performance in a collaborative task. We attempted to create an experimental setup which would facilitate the occurrence of inter-brain synchrony, while removing any bodily cues and controlling, as much as possible, for spurious synchronization. We also wanted to create a granular performance measure that could be calculated for any segment of the data, to make it possible to investigate dynamic changes in synchrony during the measurement and their connection to dynamic changes in collaborative success during the task.

Oct 5, 2022

7 Lessons on Aging

Posted by in categories: biotech/medical, education, life extension

“The idea was to build a society like we have for all the other disciplines in medicine,” says Evelyne Bischof, a professor of medicine at Shanghai University of Medicine and Health Sciences and the inaugural vice president of the society. She has previously spearheaded educational efforts with Zhavoronkov and others, co-developing a formal course on longevity medicine for doctors. At the ARDD meeting, Bischof announced their course had just received continuing medical education (CME) accreditation from the American Medical Association.

“Longevity medicine is crystallizing as a discipline,” says Andrea Maier, an internal medicine specialist and geriatrician at National University of Singapore who is serving as the society’s inaugural president. One thing that’s not yet clear, several experts told me, is whether longevity will come to be established as a sub-discipline of geriatrics or internal medicine or whether it will become a separate medical specialty unto itself.

“Whichever way it goes,” Maier says, “it’s happening.”

Oct 5, 2022

Engineers create the highest specific strength titanium alloy using 3D printing techniques

Posted by in categories: 3D printing, biotech/medical

A world-first study led by Monash University engineers has demonstrated how cutting-edge 3D-printing techniques can be used to produce an ultra strong commercial titanium alloy—a significant leap forward for the aerospace, space, defense, energy and biomedical industries.

Australian researchers, led by Professor Aijun Huang and Dr. Yuman Zhu from Monash University, used a 3D-printing method to manipulate a novel microstructure. In doing so, they achieved unprecedented mechanical performance.

This research, published in Nature Materials, was undertaken on commercially available alloys and can be applied immediately.

Oct 5, 2022

Researchers develop 3D-printed shape memory alloy with superior superelasticity

Posted by in categories: 3D printing, biotech/medical

Laser powder bed fusion, a 3D-printing technique, offers potential in the manufacturing industry, particularly when fabricating nickel-titanium shape memory alloys with complex geometries. Although this manufacturing technique is attractive for applications in the biomedical and aerospace fields, it has rarely showcased the superelasticity required for specific applications using nickel-titanium shape memory alloys. Defects generated and changes imposed onto the material during the 3D-printing process prevented the superelasticity from appearing in 3D-printed nickel-titanium.

Researchers from Texas A&M University recently showcased superior tensile superelasticity by fabricating a through , nearly doubling the maximum superelasticity reported in literature for 3D printing.

This study was recently published in vol. 229 of the Acta Materialia journal.

Oct 5, 2022

Biologists Create a New Type of Human Cells

Posted by in category: biotech/medical

Professor Vincent Pasque and his colleagues at KU Leuven have used stem cells to create a new kind of human cell in the lab. The new cells closely mirror their natural counterparts in early human embryos. As a result, scientists are better able to understand what occurs just after an embryo implants in the womb. The was recently published in the journal Cell Stem Cell.

A human embryo implants in the womb around seven days after fertilization if everything goes correctly. Due to technological and ethical constraints, the embryo becomes unavailable for study at that point. That is why scientists have already created stem cell models for various kinds of embryonic and extraembryonic cells in order to investigate human development in a dish.

Oct 5, 2022

Stretchy, Wearable Synaptic Transistor Turns Robotics Smarter

Posted by in categories: biotech/medical, robotics/AI, wearables

A team of Penn State engineers has created a stretchy, wearable synaptic transistor that could turn robotics and wearable devices smarter. The device developed by the team works like neurons in the brain, sending signals to some cells and inhibiting others to enhance and weaken the devices’ memories.

The research was led by Cunjiang Yu, Dorothy Quiggle Career Development Associate Professor of Engineering Science and Mechanics and associate professor of biomedical engineering and of materials science and engineering.

The research was published in Nature Electronics.

Oct 5, 2022

AI-enabled imaging of retina’s vascular network can predict cardiovascular disease and death

Posted by in categories: biotech/medical, health, robotics/AI

AI-enabled imaging of the retina’s network of veins and arteries can accurately predict cardiovascular disease and death, without the need for blood tests or blood pressure measurement, finds research published online in the British Journal of Ophthalmology.

As such, it paves the way for a highly effective, non-invasive screening test for people at medium to high risk of circulatory disease that doesn’t have to be done in a clinic, suggest the researchers.

Circulatory diseases, including , , heart failure and stroke, are major causes of ill health and death worldwide, accounting for 1 in 4 UK deaths alone.

Oct 4, 2022

Scientists Show Transmission of Epigenetic Memory Across Multiple Generations

Posted by in categories: biotech/medical, genetics

Changing the epigenetic marks on chromosomes results in altered gene expression in offspring and in grandoffspring, demonstrating ‘transgenerational epigenetic inheritance.’

Without changing the genetic code in the DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Oct 4, 2022

Manufacturing microscopic octopuses with a 3D printer

Posted by in categories: bioengineering, biotech/medical, chemistry, robotics/AI

Although just cute little creatures at first glance, the microscopic geckos and octopuses fabricated by 3D laser printing in the molecular engineering labs at Heidelberg University could open up new opportunities in fields such as microrobotics or biomedicine.

The printed microstructures are made from —known as smart polymers—whose size and can be tuned on demand and with high precision. These “life-like” 3D microstructures were developed in the framework of the “3D Matter Made to Order” (3DMM2O) Cluster of Excellence, a collaboration between Ruperto Carola and the Karlsruhe Institute of Technology (KIT).

“Manufacturing programmable materials whose mechanical properties can be adapted on demand is highly desired for many applications,” states Junior Professor Dr. Eva Blasco, group leader at the Institute of Organic Chemistry and the Institute for Molecular Systems Engineering and Advanced Materials of Heidelberg University.

Oct 4, 2022

A breakthrough in metastasis could lead to better cancer treatments

Posted by in categories: biotech/medical, genetics

Understanding how metastasis works.

In the universal fight against cancer, metastasis is one of the most unpleasant factors that could make matters even worse; and there is still much to comprehend in the spread process. Cambridge scientists might have unveiled a breakthrough in understanding how metastasis works.

The research has been published in the journal Nature Genetics.

Continue reading “A breakthrough in metastasis could lead to better cancer treatments” »

Page 839 of 2,689First836837838839840841842843Last