Toggle light / dark theme

And just in time for the “Last of Us” series. 😂


A drug-resistant fungus Candida Auris is spreading in US hospitals at an alarming rate. Those with fragile immune systems are at risk. What happens if it enters your country or your neighbourhood? Should you be scared? Molly Gambhir reports.

#Gravitas #CandidaAuris #Fungus.

About Channel:

WION The World is One News examines global issues with in-depth analysis. We provide much more than the news of the day. Our aim is to empower people to explore their world. With our Global headquarters in New Delhi, we bring you news on the hour, by the hour. We deliver information that is not biased. We are journalists who are neutral to the core and non-partisan when it comes to world politics. People are tired of biased reportage and we stand for a globalized united world. So for us, the World is truly One.

Electronic neurons made from silicon mimic brain cells and could be used to treat autism1.

Researchers plan to use the technology in conjunction with machine learning to retrain damaged or atypical neurons and restore function in the brains of people with Alzheimer’s disease, autism or other conditions.

Another team attempted to make artificial neurons in 2015 from a conductive organic chemical, but that version oversimplified brain signaling and was too large to implant in a human brain2.

Accurately reconstructing how the parts of a complex molecular are held together knowing only how the molecule distorts and breaks up—this was the challenge taken on by a research team led by SISSA’s Cristian Micheletti and recently published on Physical Review Letters. In particular, the scientists studied how a DNA double helix unzips when translocated at high velocity through a nanopore, reconstructing fundamental DNA thermodynamic properties from the sole speed of the process.

The translocation of polymers through nanopores has long studied as a fundamental theoretical problem as well as for its several practical ramifications, e.g. for genome sequencing. We recall that the latter involves driving a DNA filament through a pore so narrow that only one of the double-helical strands can pass, while the other strand is left behind. As a result, the translocated DNA will necessarily split and unwind, an effect known as unzipping.

The research team, which also includes Antonio Suma from the University of Bari, first author, and Vincenzo Carnevale from Temple University, used a cluster of computers to simulate the process with different driving forces keeping track of the DNA’s unzipping speed, a type of data that has rarely been studied despite being directly accessible in experiments.

At a company that helps people find jobs, 2,200 employees will now have to embark on a job search of their own. Indeed laid off 15% of employees today, CEO Chris Hyams announced in an all-hands meeting.

In a blog post, Hyams elaborated on the decision by explaining that the job market is expected to continue to cool down. Indeed makes its money by allowing companies to sponsor job listings, which shows the listing to more job seekers. But Hyams said that as of last quarter, sponsored job volumes were down 33% year over year, and total job openings were down 3.5%.

“With future job openings at or below pre-pandemic levels, our organization is simply too big for what lies ahead,” Hyams wrote. “We have held out longer than many other companies, but the revenue trends are undeniable. So I have decided to act now.”

DART VADAR can automatically sense and respond to molecular triggers in cells.

During the COVID-19 pandemic, the term mRNA was brought to the public’s attention. It is, however, not a new medical technology, having been identified in 1961.

These mRNA vaccines were developed to generate a full-body immune response in order to protect the human body from the deadly coronavirus and its variants.


Dr_Microbe / iStock.

The rapid development of mRNA-based vaccines saved millions of lives worldwide. Since the beginning of the pandemic, up to twelve billion doses of mRNA vaccines have been administered globally.

“This interface could revolutionize the way we interact with technology.”

Researchers from the University of Cambridge have created a new type of neural implant that could restore limb function in paralyzed limbs.

There have been former attempts at using neural implants to restore limb function, but these mostly failed. This is because scar tissue can envelop the electrodes over time, disrupting the connection between the device and the nerve.


University of Cambridge.

The developed device works in sync between the brain and paralyzed limbs — it combines flexible electronics and human stem cells to “better integrate” with the nerve and drive limb function, according to a press release.

Scientists in the US managed to put together a living computer by cultivating over 80,000 mouse stem cells (opens in new tab) (via IT Home) (opens in new tab). One day, the hope is to have a robot that uses living muscle tissue to sense and process information about its environment.

Researchers at the University of Illinois have used tens of thousands of living mouse brain cells to build a computer that can recognize patterns of light and electricity. The team presented their findings at the American Institute of Physics in the form of a computer about the size of your palm.

Physicists at Delft University of Technology have built a new technology on a microchip by combining two Nobel Prize-winning techniques for the first time. This microchip could measure distances in materials at high precision—for example, underwater or for medical imaging.

Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. The instrument could lead to new techniques to monitor the Earth’s climate and human health. The work is now published in Nature Communications.

The microchip mainly consists of a thin ceramic sheet that is shaped like a trampoline. This trampoline is patterned with holes to enhance its interaction with lasers and has a thickness about 1,000 times smaller than the thickness of a hair. As a former Ph.D. candidate in Richard Norte’s lab, Matthijs de Jong studied the small trampolines to figure out what would happen if they pointed a simple at them.