Toggle light / dark theme

AI helps unravel a cause of Alzheimer’s disease and identify a therapeutic candidate

A new study found that a gene recently recognized as a biomarker for Alzheimer’s disease is actually a cause of it, due to its previously unknown secondary function. Researchers at the University of California San Diego used artificial intelligence to help both unravel this mystery of Alzheimer’s disease and discover a potential treatment that obstructs the gene’s moonlighting role.

The research team published their results on April 23 in the journal Cell.

About one in nine people aged 65 and older has Alzheimer’s disease, the most common cause of dementia. While some particular , when mutated, can lead to Alzheimer’s, that connection only accounts for a small percentage of all Alzheimer’s patients. The vast majority of patients do not have a mutation in a known disease-causing gene; instead, they have “spontaneous” Alzheimer’s, and the causes for that are unclear.

Antiviral chewing gum shows promise in reducing influenza and herpes spread

In today’s interconnected world, infectious diseases pose an escalating threat, as demonstrated by the coronavirus pandemic and outbreaks of H1N1, SARS, Ebola, Zika, and H5N1 (bird flu) viruses—all of which have had significant global health and economic impacts.

But more common viral diseases also contribute to global health challenges and economic costs. For example, seasonal influenza epidemics occur annually, causing a substantial global disease burden and economic losses exceeding $11.2 billion each year in the United States alone. Meanwhile, herpes simplex virus-1 (HSV-1), spread primarily through oral contact, infects over two-thirds of the global population and is the leading cause of infectious blindness in Western countries.

Low vaccination rates for influenza viruses and the lack of an HSV vaccine underscore the need for a new approach—one that targets reducing viral loads at the sites where transmission occurs. And for viruses like these, which are transmitted more efficiently through the mouth than the nose, this means focusing on the oral cavity.

Super stem cells become better versions of themselves by changing their diet

In a new study, researchers from the University of Copenhagen have successfully created stem cells that are better at developing into other cell types, like a younger, fitter version of themselves—by changing their diet. These stem cells are better than normal stem cells at creating specialized cells like liver, skin or nerve cells, which is a core trait of stem cells.

The study, “Altering metabolism programs cell identity via NAD+-dependent deacetylation” has been published in The EMBO Journal.

“We show that by changing their diet, the stem cells can rejuvenate and turn into ‘super stem cells.’ It forces them to metabolize their energy in a different way than they normally would, and that process essentially reprograms the stem cells,” says first author Robert Bone, Assistant Professor at the Novo Nordisk Foundation Center for Stem Cell Medicine, also known as reNEW.

Study finds common sleeping pill could help prevent Alzheimer’s disease

CINCINNATI (WKRC) — A commonly prescribed sleeping pill could be a powerful tool in preventing Alzheimer’s disease, according to recently published research.

The study, published in Annals of Neurology, was born from the long-standing scientific belief that poor sleep increases a person’s risk of Alzheimer’s. This belief came from the fact that sleep clears out wasteful proteins like amyloid-beta and tau, which Alzheimer’s patients often have a high build up of.

The study examined suvorexant, a sleeping pill regularly prescribed for insomnia, and observed its effects on clearing those waste proteins.

Eating Chicken and Other White Meat Can Shorten Your Lifespan, New Study Says

Should you step away from the chicken wings?

For years, the conventional wisdom has been to swap out red meat for white meats like chicken and poultry to help reduce health risks like increased cholesterol, cancer, and inflammation —not to mention get a more budget-friendly protein source. But a new study links eating chicken and other poultry with a significantly increased risk of dying from gastrointestinal cancer and all other causes.

But before you put down the chicken—or roll your eyes and get back to your chicken Caesar—check out the details of the study, and what a dietitian says you should do if you’re concerned.

New bone marrow imaging technique could pave way for drug development and new therapies

Indiana University School of Medicine scientists have developed a powerful new imaging technique to study bone marrow in mouse models. By overcoming key challenges unique to imaging this complex tissue, this advancement could support future drug development and therapies for conditions involving bone marrow, including cancers, autoimmune diseases and musculoskeletal disorders.

The new method was made possible by the multiplex imaging tool Phenocycler 2.0, which enabled researchers to visualize a record number of cellular markers within intact tissue from mice. The findings are published in Leukemia.

“Bone marrow is difficult to study because it is gelatinous and encased in hard bone,” said Sonali Karnik, Ph.D., assistant research professor of orthopedic surgery at the IU School of Medicine and co-lead author of the study. “Since bone marrow plays an important role in blood and immune cell formation and houses valuable stem cells, our unique imaging approach offers a useful tool for a variety of research applications.”

Brain connectivity study identifies neural mechanisms behind psychosis remission

A study led by Pompeu Fabra University reveals which brain mechanisms allow psychosis to remit. The results of this pioneering research could have important clinical implications for exploring new intervention strategies in patients with psychosis. The study was carried out in collaboration with one of the main psychiatry groups at Lausanne University Hospital (Switzerland).

The study examines differences in the neural connectivity patterns of patients who have recovered from psychosis and subjects who have not. Identifying these differences using computational models has enabled determining which patterns of neural connectivity facilitate the remission of the disease.

The results of the research have recently been published in an article in the journal Nature Mental Health. Its principal author is Ludovica Mana, a doctor and neuroscientist of the Computational Neuroscience group at the UPF Center for Brain and Cognition (CBC). The main co-investigators are Gustavo Deco and Manel-Vila Vidal, director and researcher with the same research group, respectively.

New lease on immunity: Scientists discover key component in thymic size, function

The thymus is a crucial training ground for T-cells, the body’s “white knights,” where they learn to battle the various diseases they may encounter. Thymic function shrinks to nearly nothing as we age, severely limiting our ability to recognize and defend against cellular infiltrators.

Scientists at the University of Texas Health Science Center at San Antonio (UT Health San Antonio) discovered a crucial pathway in the thymus that determines the rate of growth and functional preservation. Surprisingly, this pathway appears to act through both indirect and direct methods. Understanding these functions could help produce treatments that preserve thymic function for longer, boosting the immune system’s power to fight disease.

A UT Health San Antonio-led study, published in Nature Aging in February 2025, highlights the role of the peptide hormone fibroblast growth factor 21 (FGF21) in regulating T-cells and, potentially, preserving thymic size over time.

Finding Success Where Theoretical Science and Practical Uses Meet

Born and brought up in East Germany, Professor Franka Kalman is a much-respected figure in the field of separation sciences. Following undergraduate and postgraduate studies at the Technical University Budapest, Hungary, where she learned about the then emerging technique of high performance liquid chromatography (HPLC), she applied that knowledge to complete her PhD looking at the analysis of novel opioid peptides at Martin Luther University Halle, Germany.

Her postdoctoral studies in the lab of the late, great Professor Csaba Horvath at Yale University, a placement that by all accounts provided both a grounding and springboard for her future career, were to be transformative and the techniques she developed there have gone on to be game-changing in the world of pharmaceutical development, analysis and quality control. Work for which she was recognized in 2012, when she was presented with the prestigious CEPharm Award from the Californian Separation Science Society (CASSS) for significant contributions to the practical application of capillary electrophoresis (CE) in the biotechnology and pharmaceutical industries.

After her time as a postdoc, she spent 13 very successful years in the pharmaceutical industry, working at the interface between science and industrial applications.