Menu

Blog

Archive for the ‘biotech/medical’ category: Page 968

Jun 21, 2022

Biochemists use new tool to control mRNA

Posted by in categories: biotech/medical, chemistry, genetics

A team of researchers at the Institute of Biochemistry at Münster University discovered that by using so-called FlashCaps they were able to control the translation of mRNA by means of light. The results have been published in Nature Chemistry.

DNA () is a long chain of molecules composed of many individual components, and it forms the basis of life on Earth. The function of DNA is to store all genetic information. The translation of this into proteins—which an organism needs to function, develop and reproduce—takes place via mRNA (messenger ribonucleic acid). The DNA is transcribed to mRNA, and the mRNA in turn is translated into proteins (protein biosynthesis). In other words, the mRNA functions as an information carrier. Biochemists at the University of Münster have now developed a new biochemical tool that is able to to control the translation of RNA with the aid of light. These so-called FlashCaps enable researchers to control a variety of processes in cells both spatially and temporally and, as a result, to determine basic functions of proteins.

Jun 21, 2022

Switching DNA functions on and off with light

Posted by in categories: biotech/medical, chemistry, genetics

DNA is the basis of life on earth. The function of DNA is to store all the genetic information an organism needs to develop, function and reproduce. It is essentially a biological instruction manual found in every cell. Biochemists at the University of Münster have now developed a strategy for controlling the biological functions of DNA with the aid of light. This enables researchers to better understand and control the processes that take place in the cell—for example, epigenetics, the key chemical change and regulatory lever in DNA. The results have been published in the journal Angewandte Chemie.

The cell’s functions depend on enzymes. Enzymes are proteins that carry out in the cell. They help to synthesize metabolic products, make copies of the DNA molecules, convert energy for the cell’s activities, change DNA epigenetically and break down certain molecules. A team of researchers headed by Prof. Andrea Rentmeister from the Institute of Biochemistry at the University of Münster used a so-called enzymatic cascade reaction to understand and track these functions better. This sequence of successive reaction steps involving different enzymes makes it possible to transfer so-called photocaging groups—chemical groups that can be removed by means of irradiation with light—to DNA. Previously, studies had shown that only small residues (small modifications such as methyl groups) could be transferred selectively to DNA, RNA (ribonucleic acid) or proteins.

“As a result of our work, it is now possible to transfer larger residues or modifications such as the photocaging groups just mentioned,” explains Nils Klöcker, one of the lead authors of the study and a Ph.D. student at the Institute of Biochemistry. Working together with structural biologist Prof. Daniel Kümmel, who also works at the Institute of Biochemistry, it was also possible to explain the basis for the changed activity at a .

Jun 21, 2022

A neural autoencoder to enhance sensory neuroprostheses

Posted by in categories: biotech/medical, robotics/AI

New technologies have the potential to greatly simplify the lives of humans, including those of blind individuals. One of the most promising types of tools designed to assist the blind are visual prostheses.

Visual prostheses are that can be implanted in the brain. These devices could help to restore vision in people affected by different types of blindness. Despite their huge potential, most existing visual prostheses achieved unimpressive results, as the vision they can produce is extremely rudimentary.

A team of researchers a University of California, Santa Barbara recently developed a that could significantly enhance the performance of visual prostheses, as well as other sensory neuroprostheses (i.e., devices aimed at restoring lost sensory functions or augmenting human abilities). The model they developed, presented in a paper pre-published on arXiv, is based on the use of a neural autoencoder, a brain-inspired architecture that can discover specific patterns in data and create representations of them.

Jun 21, 2022

Functional DNA-based cytoskeletons for synthetic cells

Posted by in categories: biotech/medical, nanotechnology

Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.

Jun 21, 2022

Prof Dr Christine Stabell Benn — Researching Non-Specific Vaccine Effects For Human Health Benefit

Posted by in categories: biotech/medical, health

Researching Non-Specific Vaccine Effects For Human Health Benefit — Prof. Dr. Christine Stabell Benn, MD, PhD, DMSc, University Of Southern Denmark


Prof. Dr. Christine Stabell Benn, MD, PhD, DMSc, (https://portal.findresearcher.sdu.dk/en/persons/cbenn), is a physician, a professor of global health at the University of Southern Denmark, and a vaccine researcher with almost thirty years of experience in the field, where the focus of her research is “non-specific vaccine effects”, defined as all those other effects, both positive and negative, that vaccines have on our immune systems and overall health, beyond their very specific ability to protect against a specific infectious disease.

Continue reading “Prof Dr Christine Stabell Benn — Researching Non-Specific Vaccine Effects For Human Health Benefit” »

Jun 20, 2022

Gut microbiome acts on the brain to control appetite

Posted by in categories: biotech/medical, food, neuroscience

The brain is the central information center and constantly monitors the state of every organ present in a body. Previous research has shown that the brain also receives signals from the gut microbiota.

In a new Immunity journal study, researchers discuss the work of Gabanyi et al. (2022), published in a recent issue of Science, which reveals that hypothalamic gamma-aminobutyric acid (GABAergic) neurons recognize microbial muropeptides through the cytosolic receptor NOD2, which regulates food intake and body temperature.

Jun 20, 2022

The FDA has authorized Covid-19 vaccines for children under 5. What should parents know?

Posted by in category: biotech/medical

😃


CNN Medical Analyst Dr. Leana Wen explains what parents should know about the FDA’s authorization of Covid-19 vaccines for children under 5.

Jun 20, 2022

Scientists Used CRISPR to Trace Every Human Gene to Its Function

Posted by in categories: biotech/medical, genetics

The vision didn’t exactly work out. DNA sequences, while capturing extremely powerful genetic information, don’t necessarily translate to indicating how our bodies behave. Genes can turn on or off in different tissues depending on the cell’s need. Reading a DNA sequence for any gene is like parsing the base code of a cell’s internal program. There’s the raw genetic code—the genotype—which determines the phenotype, life’s software that controls how cells behave. Linking the two has taken decades of painstaking experiments, slowly building up an encyclopedia of knowledge that decodes the influence of a gene on biological functions.

A new study ramped up the effort. Led by Drs. Thomas Norman and Jonathan Weissman at Memorial Sloan Kettering Cancer Center in New York and the University of California, San Francisco, respectively, the team built a Rosetta Stone for translating genotypes to phenotypes, with the help of CRISPR.

They went big. Changing gene expression in over 2.5 million human cells, the tech, dubbed Perturb-seq, comprehensively mapped how each genetic perturbation alters the cell. The technology centers around a sort of CRISPR on steroids. Once introduced into cells, Perturb-seq rapidly changes thousands of genes—a brutal shakeup at the genomic scale to see how single cells respond.

Jun 20, 2022

A new, highly effective light therapy can target and kill cancer cells

Posted by in category: biotech/medical

The promise of cancer therapies offers renewed hope for the many who suffer from the disease. In the latest news in cancer treatment, a European team of engineers, physicists, neurosurgeons, biologists, and immunologists from the U.K., Poland, and Sweden has conceived of a new form of photoimmunotherapy (in other words, light-based)…

Jun 20, 2022

The 14th Century Black Death Started in Kyrgyzstan

Posted by in category: biotech/medical

Without antibiotics or any understanding of how the disease spread, The Black Death wiped out between 30 and 50% of Europe’s population. It got its name from the spots that appeared on those who were infected. The name bubonic plague refers to buboes which were painfully swollen lymph nodes that bulged. The Black Death infections included other symptoms such as delirium, high fever, and vomiting.

The key to uncovering the origin relies on evidence from three women who were buried near Lake Issyk Kul on the edge of the Tian Shan mountains. They died in 1,338 and 1,339 of what was referenced on their grave markers as a pestilence. Nearby were many more grave markers covering the decade before The Black Death arrived in Europe.

Y. Pestis was a bacterium that resided in fleas which then past it on to animals and humans through bites. Rats were seen as the likely source of Europe’s outbreak. But humans were facilitators of the spread along trade routes from Central Asia to Europe. What we do know is that the original strain of Y. Pestis mutated into four variants with one of those arriving in Europe seven years after the Kyrgyzstan outbreak.

Page 968 of 2,707First965966967968969970971972Last