Menu

Blog

Archive for the ‘3D printing’ category: Page 45

Jun 8, 2020

Transformational Challenge Nuclear Reactor: Microreactor Built Using 3D Printing

Posted by in categories: 3D printing, nuclear energy

At the Department of Energy Manufacturing Demonstration Facility at ORNL, this part for a scaled-down prototype of a reactor was produced for industry partner Kairos Power. Credit: Kairos Power.

Jun 8, 2020

Researchers develop 3D-printable material that mimics biological tissues

Posted by in categories: 3D printing, biological

Biological tissues have evolved over millennia to be perfectly optimized for their specific functions. Take cartilage as an example. It’s a compliant, elastic tissue that’s soft enough to cushion joints, but strong enough to resist compression and withstand the substantial load bearing of our bodies: key for running, jumping, and our daily wear and tear.

Jun 6, 2020

New-and-improved MEG helmet scans the entire brain

Posted by in categories: 3D printing, biotech/medical, neuroscience, wearables

When it comes to monitoring electrical activity in the brain, patients typically have to lie very still inside a large magnetoencephalography (MEG) machine. That could be about to change, though, as scientists have developed a new version of a wearable helmet that does the same job.

Back in 2018, researchers at Britain’s University of Nottingham revealed the original version of their “MEG helmet.”

The 3D-printed device was fitted with multiple sensors that allowed it to read the tiny magnetic fields created by brain waves, just like a regular MEG machine. Unlike the case with one of those, however, wearers could move around as those readings were taking place.

Jun 6, 2020

GoodBoy — 3D Printed Arduino Robot Dog

Posted by in categories: 3D printing, robotics/AI

https://youtube.com/watch?v=uE5hZhkQkwI

May 29, 2020

Researchers take a cue from nature to create bulletproof coatings

Posted by in category: 3D printing

Shrimp, lobsters and mushrooms may not seem like great tools for the battlefield, but three engineers from the University of Houston are using chitin—a derivative of glucose found in the cellular walls of arthropods and fungi—and 3D printing techniques to produce high-impact multilayered coatings that can protect soldiers against bullets, lasers, toxic gas and other dangers.

May 26, 2020

New material could be used to make a liquid metal robot

Posted by in categories: 3D printing, engineering, nuclear energy, robotics/AI

Eric Klien


A liquid metal lattice that can be crushed but returns to its original shape on heating has been developed by Pu Zhang and colleagues at Binghamton University in the US. The material is held together by a silicone shell and could find myriad uses including soft robotics, foldable antennas and aerospace engineering. Indeed, the research could even lead to the creation of a liquid metal robot evoking the T-1000 character in the film Terminator 2.

The team created the liquid metal lattice using a special mixture of bismuth, indium and tin known as Field’s alloy. This alloy has the relatively unusual property of melting at just 62 °C, which means it can be liquefied with just hot water. Field’s alloy already has several applications – including as a liquid-metal coolant for advanced nuclear reactors.

Continue reading “New material could be used to make a liquid metal robot” »

May 23, 2020

Nano Comes to Life: How Nanotechnology Is Transforming Medicine and the Future of Biology

Posted by in categories: 3D printing, biotech/medical, life extension, nanotechnology, neuroscience, quantum physics

If you’re interested in superlongevity and superintelligence, then I have a book to recommend., by Sonia Contera, is a book about the intersection of biotech and nanotech. Interesting and well written for the layman, the book covers some of the latest developments in nanotechnology as it applies to biological matters. Although there are many topics, I was primarily interested in the DNA nanobots, DNA origami, and the protein nanotechnology sections. My interest is piqued in these arenas due to my expectation that DNA nanobots and protein nanobots, as well as complex self-assembled custom nanostructures, are going to be key to some of the longevity technologies and some of the possible substrates for mind uploading that are key to superlongevity and superintelligence. There are also sections in the book on 3D bioprinted organs — progress and possibilities, as well as difficulties.

There is even a section that clearly was written specifically to address a discussion that has engaged my friends, Dinorah Delfin and Dan Faggella. The title is:

FUTURE DEVICES: QUANTUM PHYSICS MEETS BIOLOGY MEETS NANOTECHNOLOGY

Now, some might be tempted to consider that particular combination to be “woo woo”, however, please keep in mind the author’s credentials. Sonia Contera is a professor of biological physics in the Department of Physics at the University of Oxford.

Continue reading “Nano Comes to Life: How Nanotechnology Is Transforming Medicine and the Future of Biology” »

May 23, 2020

Cellular Aquaculture — Feed The World and Save the Oceans — Lou Cooperhouse, President & CEO, BlueNalu — ideaXme — Ira Pastor

Posted by in categories: 3D printing, bioengineering, biological, bioprinting, business, food, futurism, health, lifeboat, science

May 19, 2020

Controlling spatter during laser powder bed fusion found to reduce defects in metal-based 3D printing

Posted by in categories: 3D printing, biotech/medical

A team of researchers with members from Lawrence Livermore National Laboratory, Wright-Patterson Air Force Base and the Barnes Group Advisors found that controlling spatter during laser-powder bed fusion can reduce defects in metal-based 3D printing. In their paper published in the journal Science, the group describes studying the additive manufacturing printing methodology and what they learned about it. Andrew Polonsky and Tresa Pollock with the University of California, Santa Barbara have published a Perspective piece on the work done by the team in the same journal issue.

As additive manufacturing printing methodologies mature, are being tested to find out if they might be used in 3D printers to create new products. In recent years, this has extended to metals. One such technique is called laser-powder bed fusion (L-PBF). It involves the use of a high-powered laser to melt and fuse metallic powders layer by layer to produce a 3D part. It has been hoped that the technique could eventually be used for aerospace and biomedical applications. But thus far, such efforts have fallen short due to the large number of defects that occur with the process. In this new effort, the researchers have discovered a way to reduce such defects, perhaps paving the way for the technique to finally fulfill its promise.

To better understand why the L-PBF process leads to so many defects (such as undesired pores) the researchers conducted X-ray synchrotron experiments and built predictive multi-physics models to gain a better understanding of what occurs during printing. One of their goals was to better understand how energy is absorbed during with powder layers that are only a few particles thick.

May 18, 2020

A soft robotic finger fabricated using multi-material 3D printing

Posted by in categories: 3D printing, robotics/AI

Researchers at Zhejiang University of Technology, Tianjin University, Nanjing Institute of Technology and Ritsumeikan University have recently created a soft robotic finger that integrates a self-powered curvature sensor using multi-material 3D printing technology. The new robotic finger, presented in a paper published in Elsevier’s Nano Energy journal, is made of several materials, including a stretchable electrode, polydimethylsiloxane (PDMS), AgilusBlack, VeroWhite and FLX9060.

“Soft robots have the potential to bridge the gap between machines and humans, but it is important for them to ensure a safe interaction between humans, objects and the environment,” Mengying Xie, co-author of the paper, told TechXplore. “Embedded soft are critical for the development of controllable that can fulfill their full potential in practical applications.”

In their previous research, part of the research team working at Ritsumeikan University developed a fully multi-material 3D printed gripper with variable stiffness that could achieve robust grasping of objects. In this new study, Xie, Zhu and their colleagues drew inspiration from this previous work and set out to create a 3D-printed soft finger with sensing capabilities that could monitor its bending movements.

Page 45 of 141First4243444546474849Last