Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1022

Apr 8, 2022

Advocacy group’s advisory board members defect over Biogen Alzheimer’s drug

Posted by in categories: biotech/medical, life extension, neuroscience

The furious debate over Aduhelm has now sparked controversy over the Alliance for Aging Research, which has seen half of its scientific advisory board members resign.

Apr 7, 2022

A robot that can put a surgical gown on a supine mannequin

Posted by in categories: biotech/medical, health, robotics/AI

A pair of researchers working in the Personal Robotics Laboratory at Imperial College London has taught a robot to put a surgical gown on a supine mannequin. In their paper published in the journal Science Robotics, Fan Zhang and Yiannis Demiris described the approach they used to teach the robot to partially dress the mannequin. Júlia Borràs, with Institut de Robòtica i Informàtica Industrial, CSIC-UPC, has published a Focus piece in the same journal issue outlining the difficulties in getting robots to handle soft material and the work done by the researchers on this new effort.

As researchers and engineers continue to improve the state of robotics, one area has garnered a lot of attention—using robots to assist with health care. In this instance, the focus was on assisting patients in a who have lost the use of their limbs. In such cases, dressing and undressing falls to healthcare workers. Teaching a robot to dress patients has proven to be challenging due to the nature of the soft materials used to make clothes. They change in a near infinite number of ways, making it difficult to teach a robot how to deal with them. To overcome this problem in a clearly defined setting, Zhang and Demiris used a new approach.

The setting was a simulated hospital room with a mannequin lying face up on a bed. Nearby was a hook affixed to the wall holding a surgical gown that is worn by pushing arms forward through sleeves and tying in the back. The task for the robot was to remove the gown from the hook, maneuver it to an optimal position, move to the bedside, identify the “patient” and its orientation and then place the gown on the patient by lifting each arm one at a time and pulling the gown over each in a natural way.

Apr 7, 2022

Scientists make further inroads into reversing ageing process of cells

Posted by in categories: biotech/medical, life extension

People could eventually be able to turn the clock back on the cell-ageing process by 30 years, according to researchers who have developed a technique for reprogramming skin cells to behave as if they are much younger.

Research from the Babraham Institute, which is affiliated to the University of Cambridge, could lead to the development of techniques that will stave off the diseases of old age by restoring the function of older cells and reducing their biological age.

Apr 7, 2022

Development milestone for smart contact lens

Posted by in categories: augmented reality, biotech/medical

California-based company Mojo has announced its latest prototype Mojo Lens. This new version includes the world’s smallest and densest display for projecting augmented reality (AR) imagery.

Apr 7, 2022

Omicron BA.2 subvariant becomes dominant in Tokyo

Posted by in category: biotech/medical

Officials in Tokyo are concerned about the more transmissible BA.2 Omicron coronavirus subvariant, which is increasingly dominant among infections.

The capital’s expert panel says its screening indicates the BA.2 subvariant accounted for nearly 68 percent of new cases in the week through March 28. The rate has climbed nearly 30 points in the past two weeks.

Tohoku Medical and Pharmaceutical University Professor Kaku Mitsuo said, “We are at a critical moment where infections will rapidly spread or not.” He added, “We have to take measures to prevent it from happening.”

Apr 7, 2022

Scientists Used Cellular Rejuvenation Therapy to Rewind Aging in Mice

Posted by in categories: biotech/medical, genetics, life extension

At roughly 70 years human age, the mice looked elderly and unremarkable. Yet hidden underneath was a youthful cellular clock, turned back in time based on a Nobel-Prize-winning strategy. It’s also the latest bet for finding the fountain of youth, backed by heavy-hitter anti-aging startups in Silicon Valley.

At the center is partial cellular reprogramming. The technique, a sort of gene therapy, forces cells to make four proteins, collectively dubbed the Yamanaka factors. Like erasers, the factors wipe a cell’s genetic history clean, reverting adult cells—for example, skin cells—to a stem cell-like identity, giving them back the superpower to turn into almost any type of cell.

The process isn’t all-or-nothing. In a twist, scientists recently found that they can use the factors to rewind a cell’s genetic history tape rather than destroying it altogether. And if they stop at the right point, the cell dramatically loses its age, becoming more youthful but retaining its identity. The results spurred a wave of interest in moving the therapy to humans, with Calico Life Sciences—a sister company to Google—and Altos Labs, backed by Jeff Bezos, in the race.

Apr 7, 2022

6 terminally ill cancer patients in Canada received doses of the psychoactive substance found in ‘magic’ mushrooms after authorities eased rules

Posted by in categories: biotech/medical, information science, robotics/AI

Psilocybin is illegal in Canada, but people can apply for exemptions for end-of-life anxiety.


AI algorithms prompt robot to interrogate, select, decision-make to create a painting.

Apr 7, 2022

Applying genome sequencing to rare disease diagnoses

Posted by in categories: biotech/medical, information science, robotics/AI

The study also developed an automated diagnostic pipeline to streamline the genomic data— including the millions of variants present in each genome—for clinical interpretation. Variants unlikely to contribute to the presenting disease are removed, potentially causative variants are identified, and the most likely candidates prioritized. For its pipeline, the researchers and clinicians used Exomiser, a software tool that Robinson co-developed in 2014. To assist with the diagnostic process, Exomiser uses a phenotype matching algorithm to identify and prioritize gene variants revealed through sequencing. It thus automates the process of finding rare, segregating and predicted pathogenic variants in genes in which the patient phenotypes match previously referenced knowledge from human disease or model organism databases. The use of Exomiser was noted in the paper as having greatly increased the number of successful diagnoses made.

The genomic future.

Not surprisingly, the paper concludes that the findings from the pilot study support the case for using whole genome sequencing for diagnosing rare disease patients. Indeed, in patients with specific disorders such as intellectual disability, genome sequencing is now the first-line test within the NHS. The paper also emphasizes the importance of using the HPO to establish a standardized, computable clinical vocabulary, which provides a solid foundation for all genomics-based diagnoses, not just those for rare disease. As the 100,000 Genomes Project continues its work, the HPO will continue to be an essential part of improving patient prognoses through genomics.

Apr 7, 2022

Nanoengineered bacteria provide light-activated cancer therapy

Posted by in categories: bioengineering, biotech/medical

Cancer cells thrive by competing with normal cells for survival. Now, researchers are employing living bacteria to fight back against the cancer. This so-called bacteriotherapy – the deployment of bacteria to fight cancer – has sparked interest in the fields of immunotherapy and bioengineering.

Apr 7, 2022

Genetic ‘Hotspots’ That Speed up and Slow Down Brain Aging Could Provide New Targets for Alzheimer’s Drugs

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Summary: 15 newly discovered “hotspots” in the genome that either speed up or slow down brain aging could be new targets for the development of Alzheimer’s medications and therapies for other brain disorders.

Source: USC

Researchers from a USC-led consortium have discovered 15 “hotspots” in the genome that either speed up brain aging or slow it down—a finding that could provide new drug targets to resist Alzheimer’s disease and other degenerative brain disorders, as well as developmental delays.