Menu

Blog

Archive for the ‘biotech/medical’ category: Page 144

May 25, 2024

Dr. Diane DiEuliis — NDU — Preparing National Security Leaders For The Next Generation Of Threats

Posted by in categories: bioengineering, biological, biotech/medical, climatology, education, health, neuroscience, policy

Episode Disclaimer — The views presented in this episode are those of the speaker and do not necessarily represent the views of the United States Department of Defense (DoD) or its components.

Dr. Diane DiEuliis, Ph.D. is a Distinguished Research Fellow at National Defense University (NDU — https://www.ndu.edu/), an institution of higher education, funded by the United States Department of Defense, aimed at facilitating high-level education, training, and professional development of national security leaders. Her research areas focus on emerging biological technologies, biodefense, and preparedness for biothreats. Specific topic areas under this broad research portfolio include dual-use life sciences research, synthetic biology, the U.S. bioeconomy, disaster recovery, and behavioral, cognitive, and social science as it relates to important aspects of deterrence. Dr. DiEuliis currently has several research grants in progress, and teaches in foundational professional military education.

Continue reading “Dr. Diane DiEuliis — NDU — Preparing National Security Leaders For The Next Generation Of Threats” »

May 25, 2024

This Device Zaps the Spinal Cord to Give Paralyzed People Use of Their Hands Again

Posted by in category: biotech/medical

Reid was part of a 60-participant clinical trial that looked to use spinal cord stimulation to regain control of both hands. Similar treatments have shown promise in paraplegic patients, restoring the ability to walk in just a day. But those required surgery to place electrodes on the spinal cord.

ARC-EX therapy, by contrast, delivers two different types of electrical pulses through the skin—no surgery required. Developed by Grégoire Courtine and colleagues at the Swiss Federal Institute of Technology, the device improved hand strength, pinch, and other movements in 72 percent of participants.

Because the device is non-invasive, it’s a simple addition to physical rehabilitation programs—a sort of pilates for the fingers, explained the team. The trial only included two months of stimulation, and extending the timeline could potentially further improve results.

May 24, 2024

New study supports recommendation to begin mammogram screening at 40

Posted by in category: biotech/medical

A liquid biopsy accurately detected early-stage pancreatic cancer in a large study. More studies are needed before it’s ready for clinical use, experts said.

May 24, 2024

How air pollution affects the digestive system

Posted by in categories: biotech/medical, health

Fine air particles, less than 2.5 micrometers in diameter (PM2.5), are a major air pollutant linked to various health problems. These particles can travel deep into the lungs and even enter the bloodstream when inhaled. Recent research suggests a major health concern: PM2.5 exposure can also damage the digestive system, including the liver, pancreas, and intestines.

May 24, 2024

Time-Symmetric Motion Maximizes Energy Efficiency in Fluid

Posted by in categories: biotech/medical, nanotechnology

Researchers discovered a trick for dragging an object in a fluid with minimal effort, suggesting an optimal strategy for nanorobots.

A research team has demonstrated that the most efficient protocol for dragging a microscopic object through a fluid has an unexpected feature: the variation of the velocity with time after the midpoint of the trip is the reverse of its variation up to the midpoint [1]. This time-symmetry property, the researchers say, can help to identify the most efficient control strategy in a wide variety of micromechanical systems and could improve the operation of tiny machines.

Biomedical engineers are exploring micro-and nanoscale devices that swim through the body under their own power to deliver drugs [2]. Machine-like motion at tiny scales is also common in biology, for instance in the transport of compartments called vesicles by motor proteins inside cells [3]. To understand the energetics of such systems, Sarah Loos of the University of Cambridge and colleagues have studied a simple model of microscale transport. They used optical tweezers—a laser beam that can trap a small particle—to drag a 2.7-micrometer-diameter silica sphere through fluids. “This problem is simple enough to be solved analytically and realized experimentally, yet rich enough to show some fundamental characteristics of optimal control in complex systems,” says Loos. In practice, the device inducing the motion “could be a nanorobot carrying a drug molecule or a molecular motor that pulls or pushes against a microscopic object.”

May 24, 2024

Combining human olfactory receptors with artificial organic synapses and a neural network to sniff out cancer

Posted by in categories: biotech/medical, chemistry, robotics/AI

A team of chemical and biological engineers at Seoul National University in the Republic of Korea has developed a proof-of-concept device that could one day lead to the creation of an artificial nose.

May 24, 2024

Promethium Discovery Set to Rewrite Chemistry Textbooks

Posted by in categories: biotech/medical, chemistry, space travel

Scientists have made a significant breakthrough in understanding the properties of promethium, a rare earth element with elusive characteristics despite its use in modern technology.

Researchers have uncovered the properties of a rare earth element that was first discovered 80 years ago at the very same laboratory. Their discoveries open a new pathway for the exploration of elements critical in modern technology, from medicine to space travel.

Continue reading “Promethium Discovery Set to Rewrite Chemistry Textbooks” »

May 24, 2024

First topological quantum simulator device in strong light-matter interaction regime to operate at room temperatures

Posted by in categories: biotech/medical, quantum physics

Researchers at Rensselaer Polytechnic Institute have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings, published in the journal Nature Nanotechnology, could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

May 24, 2024

CAR T cell therapy targeting HER2 antigen shows promise against advanced sarcoma in phase I trial

Posted by in category: biotech/medical

Researchers at Texas Children’s Cancer Center and the Center for Cell and Gene Therapy at Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist published results of a phase I clinical trial of a novel immunotherapy for high-risk sarcomas in the journal Nature Cancer.

The therapy uses chimeric antigen receptor (CAR) T cells engineered to target the HER2 protein, which is overexpressed on the surface of sarcoma cells. Sarcoma is a type of solid cancer that develops in the bones and soft tissues. The HEROS 2.0 trial showed that this therapeutic approach is safe and is associated with clinical benefit.

“CAR T cell therapy has been a highly successful strategy for recurrent or high-risk leukemias or lymphomas, but challenges remain in using this therapy for solid tumors,” said first and corresponding author Dr. Meenakshi Hegde, associate professor of pediatricshematology and oncology at Baylor and pediatric oncologist at Texas Children’s Cancer Center. “The results of this trial show that we are moving the dial in harnessing the power of CAR T cells as an effective anticancer therapy for sarcomas.”

May 24, 2024

A thin-film optogenetic visual prosthesis

Posted by in categories: biotech/medical, cyborgs, finance, genetics

Retinitis pigmentosa and macular degeneration lead to photoreceptor death and loss of visual perception. Despite recent progress, restorative technologies for photoreceptor degeneration remain largely unavailable. Here, we describe a novel optogenetic visual prosthesis (FlexLED) based on a combination of a thin-film retinal display and optogenetic activation of retinal ganglion cells (RGCs). The FlexLED implant is a 30 µm thin, flexible, wireless µLED display with 8,192 pixels, each with an emission area of 66 µm2. The display is affixed to the retinal surface, and the electronics package is mounted under the conjunctiva in the form factor of a conventional glaucoma drainage implant. In a rabbit model of photoreceptor degeneration, optical stimulation of the retina using the FlexLED elicits activity in visual cortex. This technology is readily scalable to hundreds of thousands of pixels, providing a route towards an implantable optogenetic visual prosthesis capable of generating vision by stimulating RGCs at near-cellular resolution.

### Competing Interest Statement.

All authors have a financial interest in Science Corporation.

Page 144 of 2,738First141142143144145146147148Last