Menu

Blog

Archive for the ‘biotech/medical’ category: Page 2443

Dec 22, 2016

Using graphene to detect brain cancer cells

Posted by in categories: biotech/medical, neuroscience

Graphene has already proven its importance to brain implants as well as other Synbio technology.


Brain cell culture. Left: Normal astrocyte brain cell; Right: cancerous Glioblastoma Multiforme (GBM) version, imaged by Raman spectrography. (credit: B. Keisham et al./ACS Appl. Mater. Interfaces)

By interfacing brain cells with graphene, University of Illinois at Chicago researchers have differentiated a single hyperactive Glioblastoma Multiforme cancerous astrocyte cell from a normal cell in the lab — pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.

Continue reading “Using graphene to detect brain cancer cells” »

Dec 22, 2016

Young microglia restore amyloid plaque clearance of aged microglia

Posted by in categories: biotech/medical, neuroscience

Rejuvenating the immune system offers hope for Alzheimer’s patients and removal of plaques.


Alzheimer′s disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co‐culturing organotypic brain slices from up to 20‐month‐old, amyloid‐bearing AD mouse model (APPPS1) and young, neonatal wild‐type (WT) mice. Surprisingly, co‐culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.

Read more

Dec 22, 2016

CellAge Campaign Q&A: Are You a For-Profit Company? | Lifespan.io

Posted by in categories: biotech/medical, life extension

Non-profit research ultimately benefits for-profit companies and is an essential part of the development chain of any therapy.


Companies like Unity Biotech have taken non-profit research and are developing it for-profit, this is the only way that therapies will make it to market and pay for the huge costs involved in development. You may have concerns that our current crowdfunding project is with a for-profit company so here is CellAge to answer this question.

Continue reading “CellAge Campaign Q&A: Are You a For-Profit Company? | Lifespan.io” »

Dec 22, 2016

Classifying Aging As a Disease: The Role of Microbes

Posted by in categories: biotech/medical, health, life extension

The body is under constant invasion by microbes so rejuvenation of the immune system and reduction of imflammation is a big priority for rejuvenation biotechnology.


Recent publications have proposed that aging should be classified as a disease (Bulterijs et al., 2015; Zhavoronkov and Bhullar, 2015; Zhavoronkov and Moskalev, 2016). The goal of this manuscript is not to dispute these claims, but rather to suggest that when classifying aging as a disease, it is important to include the contribution of microbes.

As recently as ~115 years ago, more than half of all deaths were caused by infectious diseases, including pneumonia, influenza, tuberculosis, gastrointestinal infections, and diphtheria (Jones et al., 2012). Since then, the establishment of public health departments that focused on improved sanitation and hygiene, and the introduction of antibiotics and vaccines allowed for a dramatic decrease in infectious disease-related mortality (Report, 1999). In 2010, the death rate for infectious diseases was reduced to 3% (Jones et al., 2012). Simultaneously, as infectious disease-related mortality rates have decreased, global lifespan has increased from ~30 to ~70 years (Riley, 2005).

Continue reading “Classifying Aging As a Disease: The Role of Microbes” »

Dec 22, 2016

Deep sea bacteria cured half of all prostate cancer suffers in trial

Posted by in category: biotech/medical

Bacteria that lives on the ocean floor has been found to cure half of all male prostate cancer sufferers in a London trial. It’s injected into the bloodstream and could replace surgery.

Read more

Dec 21, 2016

Artificial leaf could make a medicinal mini-factory

Posted by in categories: biotech/medical, drones, internet, sustainability

Leaves are kind of like nature’s power plants, converting incoming sunlight into energy for the plant to thrive on. Inspired by the real thing, scientists have previously created artificial leaves that function in much the same way as their natural counterparts to produce electricity and even liquid fuels. Now a team at Eindhoven University of Technology (TU/e) is using a similar system to produce chemicals, which could one day lead to solar-powered “mini-factories” that can produce drugs, pesticides and other chemicals almost anywhere.

To mimic the light-capturing molecules in leaves, the researchers turned to luminescent solar concentrators (LSCs), materials seen in solar-harvesting window technology and used to catch and amplify laser beams carrying data in Facebook’s drone-mounted internet projec t. These LSCs absorb incoming light, convert it to specific wavelengths and then guide the photons to the edges of the device.

Continue reading “Artificial leaf could make a medicinal mini-factory” »

Dec 21, 2016

Bionic pancreas system manages blood sugar levels in patients with type 1 diabetes living at home

Posted by in categories: biotech/medical, cyborgs, engineering, health, transhumanism

The bionic pancreas system developed by Boston University (BU) investigators proved better than either conventional or sensor-augmented insulin pump therapy at managing blood sugar levels in patients with type 1 diabetes living at home, with no restrictions, over 11 days. The report of a clinical trial led by a Massachusetts General Hospital (MGH) physician is receiving advance online publication in The Lancet.

“For study participants living at home without limitations on their activity and diet, the bionic pancreas successfully reduced average blood glucose, while at the same time decreasing the risk of hypoglycemia,” says Steven Russell, MD, PhD, of the MGH Diabetes Unit. “This system requires no information other than the patient’s body weight to start, so it will require much less time and effort by health care providers to initiate treatment. And since no carbohydrate counting is required, it significantly reduces the burden on patients associated with diabetes management.”

Developed by Edward Damiano, PhD, and Firas El-Khatib, PhD, of the BU Department of Biomedical Engineering, the bionic pancreas controls patients’ blood sugar with both insulin and glucagon, a hormone that increases glucose levels. After a 2010 clinical trial confirmed that the original version of the device could maintain near-normal blood sugar levels for more than 24 hours in adult patients, two follow-up trials — reported in a 2014 New England Journal of Medicine paper — showed that an updated version of the system successfully controlled blood sugar levels in adults and adolescents for five days. Another follow-up trial published in The Lancet Diabetes and Endocrinology in 2016 showed it could do the same for children as young as 6 years of age.

Continue reading “Bionic pancreas system manages blood sugar levels in patients with type 1 diabetes living at home” »

Dec 21, 2016

Learn Great Problem Solving From These Medical Researchers (Watch)

Posted by in categories: biotech/medical, business

Is there something your small business could do to impart a little magic onto the world? Using your problem solving skills may help you do just that.

Read more

Dec 21, 2016

Electrical signaling in heart and nerve cells using graphene

Posted by in categories: biotech/medical, particle physics, robotics/AI

Nice.


Scientists have enlisted the exotic properties of graphene, a one-atom-thick layer of carbon, to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields in a liquid. Researchers hope the new method will allow more extensive and precise imaging of the electrical signaling networks in our hearts and brains.

The ability to visually depict the strength and motion of very faint electrical fields could also aid in the development of so-called lab-on-a-chip devices that use very small quantities of fluids on a microchip-like platform to diagnose disease or aid in drug development, for example, or that automate a range of other biological and chemical analyses. The setup could potentially be adapted for sensing or trapping specific chemicals, too, and for studies of light-based electronics (a field known as optoelectronics).

Continue reading “Electrical signaling in heart and nerve cells using graphene” »

Dec 21, 2016

Herbal medicine may make tuberculosis easier to treat

Posted by in categories: biotech/medical, evolution

Herbs treating Tuberculosis.


A centuries-old herbal medicine, discovered by Chinese scientists and used to effectively treat malaria, may help treat tuberculosis and slow the evolution of drug resistance.

A new study shows the ancient remedy artemisinin stopped the ability of TB-causing bacteria, known as Mycobacterium tuberculosis, to become dormant. This stage of the disease often makes the use of antibiotics ineffective.

Continue reading “Herbal medicine may make tuberculosis easier to treat” »