Menu

Blog

Archive for the ‘biotech/medical’ category: Page 379

Oct 3, 2023

Functional photoacoustic imaging: from nano- and micro- to macro-scale

Posted by in categories: biotech/medical, chemistry, nanotechnology

In the biomedical field, optical characterization of cells and tissues is a valuable tool for understanding physiological mechanisms. Current biomedical optical imaging techniques include fluorescence imaging [1], confocal microscopy [2], optical coherence tomography [3], two-photon microscopy [4], near-infrared spectroscopy [5], and diffuse optical tomography [6]. These techniques have significantly advanced biomedical technology and are widely used for both preclinical and clinical purposes. However, the strong optical scattering within turbid biological tissues fundamentally limits the imaging depth of these pure optical imaging techniques to no deeper than the optical ballistic depth ( 1 mm). Thus, their observation depth is superficial and other imaging modalities are needed to explore deeper layers of biological tissue [7].

Photoacoustic imaging (PAI), a promising biomedical technique, achieves superior imaging depths by forming images from optically-derived acoustic signals, which inherently attenuate less than optical signals in biological tissue [8, 9, 10]. PAI is based on the photoacoustic (PA) effect, in which energy is converted from light to acoustic waves via thermoelastic expansion [11,12,13,14,15,16]. To generate PA waves, a laser beam with a typical pulse width of a few nanoseconds illuminates the target tissue. The optical chromophores in biological tissue absorb the light energy and then release the energy soon after. The energy release can can occur as either light energy with a slightly shifted wavelength or as thermal energy that causes thermoelastic expansion. In PAI, the rapidly alternating thermoelastic expansion and contraction caused by pulsed light illumination generates vibrations in tissue that propagate as acoustic waves called PA waves. The generated PA waves can be detected by conventional ultrasound (US) transducers for image generation. Because PAI and ultrasound imaging (USI) share the same signal reception and image reconstruction principle, the two modalities are technically fully compatible and can be implemented in a single US imaging platform accompanied with pulse laser source [17,18,19,20,21]. Since PAI can capture the photochemical properties of the target site, combining PAI with USI can provide both chemical and structural information about a target tissue.

One distinctive advantage of PAI is that its resolution and imaging depth can be adjusted to suit a specific target area. The resolution of PA signals depends on both the optical focus of the excitation laser and the acoustic focus of the receiving US transducer [22], so images with tuned spatial resolutions and imaging depths can be achieved by modifying the system configuration [23]. PAI’s wide applications to date have included nanoscale surface and organelle imaging [24,25,26,27,28], microscale cellular imaging [29,30,31,32], macroscale small animal imaging [33,34,35], and clinical human imaging [36,37,38].

Oct 2, 2023

AI could help predict pancreatic cancer, study finds

Posted by in categories: biotech/medical, internet, robotics/AI

A new study finds artificial intelligence could help predict pancreatic cancer. Dr. Chris Sander, one of the co-authors of the study, joined CBS News to talk about the findings.

#news #ai #cancer.

Continue reading “AI could help predict pancreatic cancer, study finds” »

Oct 2, 2023

Scientists discover a durable but sensitive material for high energy X-ray detection

Posted by in categories: biotech/medical, materials

X-ray technology plays a vital role in medicine and scientific research, providing non-invasive medical imaging and insight into materials. Recent advancements in X-ray technology enable brighter, more intense beams and imaging of increasingly intricate systems in real-world conditions, like the insides of operating batteries.

To support these advancements, scientists are working to develop X-ray materials that can withstand bright, high-energy X-rays—especially those from large X-ray synchrotrons—while maintaining sensitivity and cost-effectiveness.

A team of scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and their colleagues have demonstrated exceptional performance of a new material for detecting high energy X-ray scattering patterns. With excellent endurance under ultra-high X-ray flux and relatively low cost, the detector material may find wide application in synchrotron-based X-ray research.

Oct 2, 2023

Cell biologists identify new organelle present in mammalian cells made of rings of DNA

Posted by in categories: biotech/medical, life extension

Researchers at ETH Zurich recently identified a previously unknown compartment in mammalian cells. They have named it the exclusome. It is made up of DNA rings known as plasmids. The researchers have published details of their discovery in the journal Molecular Biology of the Cell.

The new compartment is in the cell plasma; it is previously uncharacterized in the literature. It is exceptional because eukaryotic cells (cells with nuclei) usually keep most of their DNA in the , where it is organized into chromosomes.

Some of the plasmids that end up in the exclusome originate from outside the cell, while others—known as telomeric rings—come from the capped ends of chromosomes, the telomeres. Particularly in certain , the ones from the telomeres are regularly pinched off and joined together to form rings. However, these don’t contain the blueprints for proteins.

Oct 2, 2023

Team elucidates mechanism for maximizing therapeutic effects of magnetic nanotherapeutics for cancer

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

A team led by Professor Choi Hong-Soo in the Department of Robotics and Mechatronics Engineering at DGIST has discovered a method to enhance the penetration of magnetic nanoparticles into cancer cells and their magnetic hyperthermia effects through research on chain disassembly and magnetic propulsion mechanisms using a rotational magnetic field.

Published in the journal ACS Nano, their study focused on the delivery of magnetic therapeutic agents using magnetic fields, an area receiving attention in the field of cancer treatment. It is expected to contribute significantly by improving drug delivery efficiency and therapeutic effects in targeted cancer treatments.

Recently, the development of targeted therapeutics that selectively treat has been gaining attention in the field of cancer treatment. Among them, research on magnetic carriers that target cancer cells using magnetic fields is underway. However, a problem arises when magnetic nanoparticles are exposed to a uniform magnetic field with a general form; they form long chains in the direction of the magnetic field, making penetration into cancer cells or tumors difficult and reducing the therapeutic efficacy.

Oct 2, 2023

Targeting A $2 Dose AGING REVERSAL Therapy For Everyone

Posted by in categories: biotech/medical, genetics, life extension

George Church at his most optimistic. June 1, 2022.


Dr George Church talks about combination therapies for age reversal, recently published papers from his lab and expresses his wish on developing inexpensive gene therapies like vaccine that can be equitably distributed to human.

Continue reading “Targeting A $2 Dose AGING REVERSAL Therapy For Everyone” »

Oct 2, 2023

Cholesterol Esters: Underrated Metabolites That Are Associated With Youth And Survival

Posted by in categories: biotech/medical, genetics, health

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Continue reading “Cholesterol Esters: Underrated Metabolites That Are Associated With Youth And Survival” »

Oct 2, 2023

Psychedelics plus psychotherapy can trigger rapid changes in the brain − new research at the level of neurons is untangling how

Posted by in categories: biotech/medical, neuroscience

The human brain can change – but usually only slowly and with great effort, such as when learning a new sport or foreign language, or recovering from a stroke. Learning new skills correlates with changes in the brain, as evidenced by neuroscience research with animals and functional brain scans in people. Presumably, if you master Calculus 1, something is now different in your brain. Furthermore, motor neurons in the brain expand and contract depending on how often they are exercised – a neuronal reflection of “use it or lose it.”

People may wish their brains could change faster – not just when learning new skills, but also when overcoming problems like anxiety, depression and addictions.

… More

Continue reading “Psychedelics plus psychotherapy can trigger rapid changes in the brain − new research at the level of neurons is untangling how” »

Oct 2, 2023

Australian Seaweed Boosts Collagen Levels in Human-Like Skin Cells in The Lab

Posted by in categories: biotech/medical, food, life extension

If you believe the headlines, seaweeds can do almost anything from storing tons of carbon and stopping cows from belching methane, to making biofuels and renewable plastics – all while sustaining vibrant coastal ecosystems and feeding communities.

Add to that list their potential wound-healing properties and possible anti-aging effects, and it’s no wonder the seaweed farming industry is booming.

A new study adds to that fanfare, with lab experiments based on human-like skin cells revealing extracts from two brown seaweeds can inhibit reactions linked to skin aging and boost collagen levels.

Oct 2, 2023

“Inverse vaccine” shows potential to treat multiple sclerosis and other autoimmune diseases

Posted by in categories: bioengineering, biotech/medical, neuroscience

A typical vaccine teaches the human immune system to recognize a virus or bacteria as an enemy that should be attacked. The new “inverse vaccine” does just the opposite: it removes the immune system’s memory of one molecule. While such immune memory erasure would be unwanted for infectious diseases, it can stop autoimmune reactions like those seen in multiple sclerosis, type I diabetes, or rheumatoid arthritis, in which the immune system attacks a person’s healthy tissues.

The inverse vaccine, described in Nature Biomedical Engineering, takes advantage of how the liver naturally marks molecules from broken-down cells with “do not attack” flags to prevent autoimmune reactions to cells that die by natural processes. PME researchers coupled an antigen — a molecule being attacked by the immune system— with a molecule resembling a fragment of an aged cell that the liver would recognize as friend, rather than foe. The team showed how the vaccine could successfully stop the autoimmune reaction associated with a multiple-sclerosis-like disease.

“In the past, we showed that we could use this approach to prevent autoimmunity,” said Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering and lead author of the new paper. “But what is so exciting about this work is that we have shown that we can treat diseases like multiple sclerosis after there is already ongoing inflammation, which is more useful in a real-world context.”

Page 379 of 2,681First376377378379380381382383Last