Menu

Blog

Archive for the ‘biotech/medical’ category: Page 641

Jul 13, 2023

The First Chemical Approach To Reprogram Cells to a Younger State

Posted by in categories: biotech/medical, chemistry, life extension

In a groundbreaking study, researchers have unlocked a new frontier in the fight against aging and age-related diseases. The study, conducted by a team of scientists at Harvard Medical School, has published the first chemical approach to reprogram cells to a younger state. Previously, this was only achievable using a powerful gene therapy.

Researchers from Harvard Medical School, University of Maine and Massachusetts Institute of Technology (MIT) published a new research paper in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

Jul 13, 2023

Light-activated molecular machines get cells ‘talking’

Posted by in categories: biotech/medical, chemistry, nanotechnology

One of the main ways cells “talk” to each other to coordinate essential biological activities such as muscle contraction, hormone release, neuronal firing, digestion and immune activation is through calcium signaling.

Rice University scientists have used light-activated molecular machines to trigger intercellular calcium wave signals, revealing a powerful new strategy for controlling cellular activity, according to a new study published in Nature Nanotechnology. This technology could lead to improved treatments for people with , digestive issues and more.

Continue reading “Light-activated molecular machines get cells ‘talking’” »

Jul 13, 2023

Jean-Pierre Sauvage, Nobel Laureate in Chemistry: ‘Work is being done on machines that will travel through the blood to kill cancer’

Posted by in categories: biotech/medical, chemistry, cyborgs, genetics, nanotechnology

Last year, the chemist – who is an emeritus professor at the University of Strasbourg – published a book titled The Elegance of Molecules. In the pages, he lets his imagination run wild. “Over time, most of the chemical reactions that govern nature could be controlled or imitated by a nanorobot: counter-offensives by the immune system, the production of antibodies, hormones on demand, the repairing of damaged cells and organs [or] the correction of anomalies in the genetic text,” Sauvage writes. “None of this will belong in the realm of science fiction in the long-term.”

Sitting in the hotel’s restaurant, however, the researcher’s realism contrasts with his futuristic fantasy. “Today, we can’t do much. Molecular machines are a somewhat new concept: we can make molecules that move as we choose [and] we can make a fairly complex molecule perform a rotary motion. Or we can make it behave like a muscle, stretching and contracting. The applications will arrive in the future, but we’re not there yet,” he stresses.

The French researcher has been developing these molecular muscles since 2002 alongside a Spanish chemist – María Consuelo Jiménez – from the Polytechnic University of Valencia. “The first thing was to show that we can make a molecule that contracts and stretches. Now, you can think of making materials – especially fibers – that can contract and stretch. Perhaps artificial muscles could be made to replace damaged muscles in people, but that will be in the future. At the moment, there are no real applications,” Sauvage clarifies.

Jul 13, 2023

WildDISCO: Visualizing whole bodies in unprecedented detail

Posted by in categories: biotech/medical, genetics, health

Researchers developed a new method called wildDISCO that uses standard antibodies to map the entire body of an animal using fluorescent markers. This revolutionary technique provides detailed 3D maps of structures, shedding new light on complex biological systems and diseases. WildDISCO has the potential to transform our understanding of intricate processes in health and disease and paves the way for exciting advancements in medical research. This technology was now introduced in Nature Biotechnology.

In the past, scientists relied on genetically modified animals or specialized labels to make specific structures and cells of interest visible in the entire body of an animal. But these approaches are expensive and time-consuming to create, especially when it comes to body-wide systems such as the nervous system.

A team of scientists from Helmholtz Munich, the LMU University Hospital and the Ludwig-Maximilians Universität München (LMU) now introduced a new method called wildDISCO, which makes use of standard antibodies to map whole bodies of mice. This ultimately enables the creation of detailed three-dimensional maps of normal and diseased structures in mammalian bodies in an easy-to-use and cost-efficient way.

Jul 13, 2023

The wizardly owl brain uses “Bayesian inference” to find prey

Posted by in categories: biotech/medical, mathematics, neuroscience

This was a surprise. Animals have brain maps for vision and touch, but these are built from visual images and touch receptors that map onto the brain through direct point‑to‑point projections. With ears, it’s entirely different. The brain compares information received from each ear about the timing and intensity of a sound and then translates the differences into a unified perception of a single sound issuing from a specific region of space. The resulting auditory map allows owls to “see” the world in two dimensions with their ears.

This proved to be a big leap toward understanding how the brain of any animal, including humans, learns to grasp its environment through sound. Think of it. Standing in a forest, you hear the crack of a falling branch or the rustle of a deer’s step in the dry leaves. Your brain calculates the time and intensity of sound to determine where it’s coming from. Owls do this task with incredible speed and accuracy. Each cochlea in the owl provides the brain with the precise timing of the sound reaching that ear within 20 microseconds. This determines how accurately the brain can calculate the interaural time difference, which in turn determines the accuracy of the localization of a sound in the azimuth. “The precision in microseconds provided by the owl cochlea is better than in any other animal that has been tested,” says Köppl. “We have big heads, so the interaural time differences are larger, making the task for cochlea and brain easier. In a nutshell, it is the combination of a small head and very precise localization that makes the owl unique.”

And here’s a finding to drop the jaw. José Luis Peña, a neuroscientist at the Albert Einstein College of Medicine, and his collaborators have discovered that the sound localization system in a barn owl’s brain performs sophisticated mathematical computations to execute this pinpointing of prey. The space‑specific neurons in the owl’s specialized auditory brain do advanced math when they transmit their information, not just adding and multiplying incoming signals but averaging them and using a statistical method called “Bayesian inference,” which involves updating as more information becomes available.

Jul 13, 2023

Study provides unprecedented insights into the complexity of large-scale neural networks

Posted by in categories: biotech/medical, robotics/AI

That experiences leave their trace in the connectivity of the brain has been known for a while, but a pioneering study by researchers at the German Center for Neurodegenerative Diseases (DZNE) and TUD Dresden University of Technology now shows how massive these effects really are. The findings in mice provide unprecedented insights into the complexity of large-scale neural networks and brain plasticity. Moreover, they could pave the way for new brain-inspired artificial intelligence methods. The results, based on an innovative “brain-on-chip” technology, are published in the scientific journal Biosensors and Bioelectronics.

The Dresden researchers explored the question of how an enriched experience affects the brain’s circuitry. For this, they deployed a so-called neurochip with more than 4,000 electrodes to detect the electrical activity of brain cells. This innovative platform enabled registering the “firing” of thousands of neurons simultaneously. The area examined – much smaller than the size of a human fingernail – covered an entire mouse hippocampus. This brain structure, shared by humans, plays a pivotal role in learning and memory, making it a prime target for the ravages of dementias like Alzheimer’s disease. For their study, the scientists compared brain tissue from mice, which were raised differently. While one group of rodents grew up in standard cages, which did not offer any special stimuli, the others were housed in an “enriched environment” that included rearrangeable toys and maze-like plastic tubes.

“The results by far exceeded our expectations,” said Dr. Hayder Amin, lead scientist of the study. Amin, a neuroelectronics and nomputational neuroscience expert, heads a research group at DZNE. With his team, he developed the technology and analysis tools used in this study. “Simplified, one can say that the neurons of mice from the enriched environment were much more interconnected than those raised in standard housing. No matter which parameter we looked at, a richer experience literally boosted connections in the neuronal networks. These findings suggest that leading an active and varied life shapes the brain on whole new grounds.”

Jul 13, 2023

Triplex Origami Method Suggests Potential Implications for Gene Therapy

Posted by in categories: biotech/medical, genetics

With triplex origami, scientists can achieve a level of artificial control over the shape of double-stranded DNA that was previously unimaginable, thereby opening new avenues of exploration, according to the Aarhus University researchers. It has recently been suggested that triplex formation plays a role in the natural compaction of genetic DNA and the current study may offer insight into this fundamental biological process.

Potential in gene therapy and beyond

The work also demonstrates that the Hoogsteen-mediated triplex formation shields the DNA against enzymatic degradation. Thus, the ability to compact and protect DNA with the triplex origami method may have large implications for gene therapy, wherein diseased cells are repaired by encoding a function that they are missing into a deliverable piece of double-stranded DNA.

Jul 13, 2023

Study presents new database linking RNA editing and blood cell differentiation

Posted by in category: biotech/medical

The process of converting DNA to proteins through an RNA is far from straightforward. Of the several types of RNA involved in the process of protein synthesis, a few may be edited mid-way. In mammals, RNA editing mostly involves converting adenosine (A) to inosine (I) through deamination, which can result in a wide range of effects. For example, A-to-I conversion can regulate gene expression in different ways and significantly alter the final synthesized protein.

While RNA editing is an essential biological process, it is also a key underlying mechanism in some diseases, including cancer. Thus, scientists have created large-scale databases documenting RNA editing sites in various human tissues. These databases serve as useful platforms for identifying potential diagnostic or therapeutic targets from the RNA editome, which encompasses all edited RNA molecules in a given cell or tissue.

Unfortunately, there are currently no databases for RNA editing in hematopoietic cells. The hematopoietic cells are unique in that they can develop into all types of cells including , , and platelets.

Jul 13, 2023

DNA element with a murky past is borrowing cell’s repair machinery

Posted by in category: biotech/medical

Like its viral cousins, a somewhat parasitic DNA sequence called a retrotransposon has been found borrowing the cell’s own machinery to achieve its goals.

In a new work appearing online Wednesday in the journal Nature, a Duke University team has determined that retrotransposons hijack a little-known piece of the cell’s DNA repair function to close themselves into a ring-like shape and then create a matching double strand.

The finding upends 40 years of conventional wisdom saying these rings were just a useless by-product of bad gene copying. It may also offer new insights into cancer, viral infections and immune responses.

Jul 13, 2023

Potentially Unlimited Supply — Scientists Grow Meat From Immortal Stem Cells

Posted by in categories: biotech/medical, life extension

For cellular agriculture—a technique that grows meat in bioreactors—to successfully feed millions, numerous technological hurdles must be conquered. The production of muscle cells from sources such as chicken, fish, cows, and more will need to increase to the point where millions of metric tons are yielded annually.

Researchers at the Tufts University Center for Cellular Agriculture (TUCCA) have made strides toward this objective by developing immortalized bovine muscle stem cells (iBSCs). These cells possess a rapid growth rate and the ability to divide hundreds of times, potentially even indefinitely, furthering the potential for large-scale meat production.

This advance, described in the journal ACS Synthetic Biology, means that researchers and companies around the globe can have access to and develop new products without having to source cells repeatedly from farm animal biopsies.

Page 641 of 2,816First638639640641642643644645Last