Menu

Blog

Archive for the ‘biotech/medical’ category: Page 282

Feb 8, 2024

Researchers uncover genetic factors for severe Lassa fever

Posted by in categories: biotech/medical, computing, genetics

While combing through the human genome in 2007, computational geneticist Pardis Sabeti made a discovery that would transform her research career. As a then-postdoctoral fellow at the Broad Institute of MIT and Harvard, Sabeti discovered potential evidence that some unknown mutation in a gene called LARGE1 had a beneficial effect in the Nigerian population.

Other scientists had discovered that this gene was critical for the Lassa virus to enter cells. Sabeti wondered whether a mutation in LARGE1 might prevent Lassa fever—an infection that is caused by the Lassa virus, is endemic in West Africa, and can be deadly in some people while only mild in others.

To find out, Sabeti decided later in 2007, as a new faculty member at Harvard University, that one of the first projects her new lab at the Broad would take on would be a (GWAS) of Lassa susceptibility. She reached out to her collaborator Christian Happi, now the Director of the African Center of Excellence for Genomics of Infectious Diseases (ACEGID) at Redeemer’s University in Nigeria, and together they launched the study.

Feb 8, 2024

International research team develops new hardware for neuromorphic computing

Posted by in categories: biotech/medical, information science, robotics/AI

In the future, modern machines should not only follow algorithms quickly and precisely, but also function intelligently—in other words, in a way that resembles the human brain. Scientists from Dortmund, Loughborough, Kiev and Nottingham have now developed a concept inspired by eyesight that could make future artificial intelligence much more compact and efficient.

They built an on-chip phonon-magnon for neuromorphic computing which has recently been featured as Editor’s Highlight by Nature Communications.

The human sensory organs convert information such as light or scent into a signal that the brain processes through myriads of neurons connected by even more synapses. The ability of the brain to train, namely transform synapses, combined with the neurons’ huge number, allows humans to process very complex external signals and quickly form a response to them.

Feb 8, 2024

21 Best Longevity Experts and Influencers on Twitter/X

Posted by in categories: biotech/medical, life extension, Peter Diamandis, robotics/AI

We’ve updated our list of the best longevity experts on Twitter/X and added 8 new accounts, including Dr. Morgan Levine, Dr. Brad Stanfield, and the research journal Nature Aging!


Best known for his popular longevity YouTube channel, Stanfield is a medical doctor with an interest in longevity science. Like some other folks on this list of longevity influencers, Stanfield can be a bit iconoclastic, challenging orthodoxy on things like resveratrol and fisetin.

Just like in his well-sourced videos, Stanfield’s Twitter feed is heavy with links to research papers and studies on longevity-related topics, from recent mouse studies out of the Interventions Testing Program, to threads on diet based on new trials. The downside is in his Twitter feed you don’t get to hear that sweet Kiwi accent you get from his videos.

Followers: 24,000

Continue reading “21 Best Longevity Experts and Influencers on Twitter/X” »

Feb 8, 2024

Prescription guide

Posted by in categories: biotech/medical, computing, cyborgs

To show one of the advantages of being a cyborg, I typed my old prescription into ZEISS Optical Inserts which are for use with the Apple Vision Pro and it said “We are really sorry, but your prescription values go beyond the available range.”

But now that I’m a cyborg with artificial lenses, any optical inserts that I might need are very common and available.

Oh, I experimented a little and it looks like they can’t make lenses for −9.75 diopters or worse. My left-eye used to be −17.25!

Continue reading “Prescription guide” »

Feb 8, 2024

Turbocharged CAR-T cells melt tumours in mice — using a trick from cancer cells

Posted by in category: biotech/medical

Immune cells armed with a mutation first identified in cancer cells gain potency but don’t turn cancerous themselves.

Feb 8, 2024

Engineered Immune Cells Improves Metabolic Function

Posted by in categories: biotech/medical, chemistry

Immunotherapy has rapidly advanced the field of medicine and has saved countless lives. The approach is much different than using an external chemical, such as in the case of chemotherapy. Immunotherapy leverages the body’s own immune system to recognize and attack foreign pathogens, specifically cancer. While there are many versions of immunotherapy, one rising star among them is known as Chimeric Antigen Receptor (CAR) T cell therapy. This therapy (usually) takes a patient’s own cells in the blood to generate engineered immune or T cells to fight the tumor. T cells are a critical immune cell population responsible for killing or lysing infected cells. In the case of CAR T cell therapy, the T cells from the patient are engineered to recognize receptors on the tumor. The CAR T-cells are then triggered to release different proteins and lyse the tumor cells. This type of therapy has revolutionized the way we treat patients with hematopoietic malignancies or blood cancers.

Feb 8, 2024

Study reveals mechanism that aggravates tuberculosis and reduces survival rates

Posted by in category: biotech/medical

CD4+ T cells have been highlighted in the scientific literature for the important role they play in the immune response to lung infections. However, an article published in the journal Cell Reports shows that an imbalance in the volumes of these defense cells in different parts of the lung in response to infection can do more harm than good.

The study described in the article involved infecting mice with hypervirulent tuberculosis and influenza. The authors concluded that an “ideal amount” of CD4+ T cells in the lungs was required for a cure.

This finding opens up perspectives for therapeutic interventions aimed at combating diseases that attack the lungs while not affecting the ability of the adaptive immune system to fight off infection. Even relatively small numbers of CD4+ T cells in the lungs proved sufficient to afford protection against tuberculosis, for example.

Feb 8, 2024

Heart-to-heart connection: Collaboration brings a breakthrough science exhibit to life

Posted by in categories: biotech/medical, science

One of the country’s best-known science museums, San Francisco’s Exploratorium, is located less than three miles north of Gladstone Institutes—proximity that has resulted in creative, high-science collaborations like the permanent exhibit featured in the latest issue of Stem Cell Reports.

Among the museum’s most popular exhibits, “Give Heart Cells A Beat” opens a rare window into the microscopic world of the beating human heart, using technology and materials made possible through Gladstone’s science and expertise. With the exhibit, the team created the first interactive museum experience that allows the public to interact directly with living cardiomyocytes.

Continue reading “Heart-to-heart connection: Collaboration brings a breakthrough science exhibit to life” »

Feb 8, 2024

Scientists code ChatGPT to design new medicine

Posted by in categories: biotech/medical, robotics/AI

To create the breakthrough model, researchers integrated two cutting-edge #AI techniques for the first time in the fields of #bioinformatics and #Cheminformatics : the well-known “Encoder-Decoder Transformer architecture” and “Reinforcement Learning via Monte Carlo Tree Search” (RL-MCTS).


Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails—it can also design new drugs to treat disease.

Today, scientists use advanced technology to design new synthetic drug compounds with the right properties and characteristics, also known as “de novo drug design.” However, current methods can be labor-, time-, and cost-intensive.

Continue reading “Scientists code ChatGPT to design new medicine” »

Feb 8, 2024

Quantum materials: A new state of matter with chiral properties

Posted by in categories: biotech/medical, quantum physics

An international research group has discovered a new state of matter characterized by the existence of a quantum phenomenon called chiral current. These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal.

Chirality is a property of extreme importance in science, for example, it is fundamental also to understand DNA. In the discovered, the chirality of the currents was detected by studying the interaction between light and matter, in which a suitably polarized photon can emit an electron from the surface of the material with a well-defined spin state.

The discovery, published in Nature, significantly enriches our knowledge of quantum materials in the search for chiral quantum phases and on the phenomena that occur at the surface of materials.

Page 282 of 2,740First279280281282283284285286Last