Menu

Blog

Archive for the ‘bioengineering’ category: Page 200

Sep 1, 2016

Pharmacogenetics Informs Clinical Practice

Posted by in categories: bioengineering, biotech/medical, computing, genetics

I remember 4 years ago at a CIO Life Sciences Conference in AZ when one of the leaders over a research lab mention the desire to finally enable patients to share their entire DNA sequence on a thumb drive with their doctor in order to be treated properly as well as have insights on the patient’s future risks. However, limitations such as HIPAA was brought up in the discussion. Personally, with how we’re advancing things like synthetic biology which includes DNA data storage, cell circuitry, electronic tattoos, etc. thumb drive maybe too outdated.


The circle that is personalized medicine consists of more than just doctor, patient, and patient data. Other elements are in the loop, such as EHR systems that incorporate gene-drug information and updated clinical guidelines.

Read more

Sep 1, 2016

Regulation of cancer epigenomes with a histone-binding synthetic transcription factor

Posted by in categories: bioengineering, biotech/medical, genetics

Chromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously we reported the first synthetic transcriptional activator, the “Polycomb-based transcription factor” (PcTF), that reads histone modifications through a protein-protein interaction between the PCD motif and trimethylated lysine 27 of histone H3 (H3K27me3). Here, we describe the genome-wide behavior of PcTF. Transcriptome and chromatin profiling revealed PcTF-sensitive promoter regions marked by proximal PcTF and distal H3K27me3 binding. These results illuminate a mechanism in which PcTF interactions bridge epigenetic marks with the transcription initiation complex. In three cancer-derived human cell lines tested here, many PcTF-sensitive genes encode developmental regulators and tumor suppressors. Thus, PcTF represents a powerful new fusion-protein-based method for cancer research and treatment where silencing marks are translated into direct gene activation.

Read more

Sep 1, 2016

Genetic ‘Extinction’ Technology Rejected

Posted by in categories: bioengineering, biological, existential risks, genetics

OAHU, HAWAI’I —(ENEWSPF)–September 1, 2016. As thousands of government representatives and conservationists convene in Oahu this week for the 2016 World Conservation Congress, international conservation and environmental leaders are raising awareness about the potentially dangerous use of gene drives — a controversial new synthetic biology technology intended to deliberately cause targeted species to become extinct.

Members of the International Union for the Conservation of Nature (IUCN), including NGOs, government representatives, and scientific and academic institutions, overwhelmingly voted to adopt a de facto moratorium on supporting or endorsing research into gene drives for conservation or other purposes until the IUCN has fully assessed their impacts. News of the August 26 digital vote comes as an important open letter to the group is being delivered.

Scientists and environmental experts and organizations from around the globe have advocated for a halt to proposals for the use of gene drive technologies in conservation. Announced today, a long list of environmental leaders, including Dr. Jane Goodall, DBE, genetics professor and broadcaster Dr. David Suzuki, Dr. Fritjof Capra, entomologist Dr. Angelika Hilbeck, Indian environmental activist Dr. Vandana Shiva and organic pioneer and biologist Nell Newman, have lent their support to the open letter: “A Call for Conservation with a Conscience: No Place for Gene Drives in Conservation.” The letter states, in part: “Gene drives, which have not been tested for unintended consequences, nor fully evaluated for ethical and social impacts, should not be promoted as conservation tools.”

Read more

Sep 1, 2016

Russia Plans Mission to Land a Rocket on Jupiter’s Ganymede, Only Moon with its Own Magnetic Field –“100-Kilometer-Deep Ocean a Hotspot for Life”

Posted by in categories: bioengineering, space

In a video uploaded to YouTube on August 3rd (below), engineers from the Russian space agency, Roscosmos, proposed an orbiter and lander mission to Ganymede. The video suggests a launch could come in the next decade. Although the commentary is in Russian, the video appears to suggest that Ganymede may be as good a candidate or better for life than Europa.

Read more

Sep 1, 2016

Biohacking Will Let You Connect Your Body to Anything You Want

Posted by in categories: bioengineering, cyborgs, health, singularity

Singularity University Global Summit is the culmination of the Exponential Conference Series and the definitive place to witness converging exponential technologies and understand how they’ll impact the world.

How many cyborgs did you see during your morning commute today? I would guess at least five. Did they make you nervous? Probably not; you likely didn’t even realize they were there.

In a presentation titled “Biohacking and the Connected Body” at Singularity University Global Summit, Hannes Sjoblad informed the audience that we’re already living in the age of cyborgs. Sjoblad is co-founder of the Sweden-based biohacker network Bionyfiken, a chartered non-profit that unites DIY-biologists, hackers, makers, body modification artists and health and performance devotees to explore human-machine integration.

Continue reading “Biohacking Will Let You Connect Your Body to Anything You Want” »

Aug 31, 2016

What Mind-Controlled Drones Mean for the Future of Digital Marketing

Posted by in categories: bioengineering, biotech/medical, drones, finance, government, neuroscience, robotics/AI, wearables

Luv this article because it hits a very important topic of how will things change with BMI/ mind control technology in general. For example with BMI will we need wearable devices? if so, what type and why? Also, how will banking, healthcare, businesses, hospitality, transportation, media and entertainment, communications, government, etc. in general will change with BMI and AI together? And, don’t forget cell circuitry, and DNA storage and processing capabilities that have been proven to date and advancing.

When you take into account what we are doing with synthetic biology, BMI, AI, and QC; we are definitely going to see some very amazing things just within the next 10 years alone.

Continue reading “What Mind-Controlled Drones Mean for the Future of Digital Marketing” »

Aug 31, 2016

Dolomite Lends a Helping Hand to Synthetic Biology Research

Posted by in categories: bioengineering, biological, computing

Excellent opportunity.


Dolomite microfluidic chips are helping researchers from the Biodesign Institute at Arizona State University (ASU) to develop novel enzymes capable of polymerising synthetic nucleotides.

dolomiteUsing these chips, the team has created a droplet-based optical polymerase sorting (DrOPS) technique allowing rapid screening for novel polymerase activities in uniform water-in-oil microcompartments. The team’s leader, Professor John C. Chaput – formerly at ASU and currently at the University of California, Irvine – explained: “The creation of synthetic nucleic acids is of great interest to synthetic biologists but, because they are not found in nature, wild type polymerases struggle to process them. To overcome this issue, we are developing novel polymerases using directed evolution in water-in-oil microcompartments. The DrOPS methodology has significant advantages over traditional methods, which are both labour intensive and impractical to perform on a large scale due to the amount of precious artificial nucleotide reagents required for screening.”

Continue reading “Dolomite Lends a Helping Hand to Synthetic Biology Research” »

Aug 30, 2016

Genetic Engineering Creates Piglets That Are Immune to Deadly Disease

Posted by in categories: bioengineering, biotech/medical, food, genetics, sustainability

Researchers genetically modify piglets to be resistant to an incurable disease plaguing hog farms, Porcine Reproductive Respiratory Syndrome (PRSS). The researchers cut out a specific gene to cure the pigs.

Read more

Aug 30, 2016

Scientists Discover That We Can Control Gene Editing With Light

Posted by in categories: bioengineering, biotech/medical

A team of researchers from MIT have developed a new technique on the genome-editing system known as CRISPR, which offers precise manipulation of when and where gene editing occurs.

Read more

Aug 29, 2016

Safer Gene Editing Without Cleaving DNA

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

It’s an add-on for CRISPR.


Researchers have created a new genome editing technique called Target-AID, which induces point mutations instead of cutting DNA

Gene editing technology has fantastic potential, but there are remaining issues and questions over safety and specificity. The major contender is currently CRISPR-Cas9, but this induces a double stranded break in DNA which is a slightly riskier approach — particularly if it cuts in other locations too that you don’t want it to. Research teams across the world are both optimising and customising the CRISPR system; creating more accurate versions or versions that regulate gene expression as opposed to editing it. One such team has now built an add-on to CRISPR, Target-AID.

Continue reading “Safer Gene Editing Without Cleaving DNA” »