Toggle light / dark theme

Whether you are lucky enough to have a cat companion or must merely live this experience vicariously through cat videos, Felis catus is a familiar and comforting presence in our daily lives. Unlike most other feline species, cats exhibit sociality, can live in groups, and communicate both with other cats and humans, which is why they have been humans’ trusted accomplices for millennia.

Despite this intimacy, there is still much that we don’t know about our feline friends. Numerous behavioral studies have been conducted on other mammal species, but relatively few on cats.

In part to fill this gap, a team of researchers at the Wildlife Research Center of Kyoto University are investigating the genetic background of cats’ behavioral traits. Specifically, they aim to understand the association between traits like purring and variation in the androgen receptor gene. Though the exact function of purring remains unclear, previous studies have indicated that it is beneficial for feline communication and survival.

Chinese researchers have developed a technology that sheds light on how the three-dimensional (3D) organization of plant genomes influences gene expression—especially in photosynthesis.

The research, which was led by Prof. Xiao Jun at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences, in collaboration with BGI Research, is published in Science Advances.

The innovative method not only provides a more precise tool for understanding the intricate 3D interactions between genes, but also highlights the critical role of long-range chromatin interactions in .

In a diseased condition, most of the time, target proteins attain toxicity following their transition from a α-helix to a β-sheet form [18]. Although numerous functional native proteins possess β-sheet conformations within them, the transition from an α-helix to a β-sheet is characteristic of amyloid deposits [19], and often associated with the change of a physiological function to a pathological one. Such abnormal conformational transition exposes hydrophobic amino acid residues and promotes protein aggregation [18, 20]. The toxic proteins often interact with other native proteins and may catalyze their transition into a toxic sate, and hence they are called infective conformations [18]. The newly formed toxic proteins can repeat this cycle to intiate a self-sustaining loop; thereby amplifying the toxicity to generate a catastrophic effect, beyond homeostatic reparative mechanisms, to eventually impair cellular function or induce cellular demise [21].

Proteins function properly when their constituent amino acids fold correctly [22]. On the other hand, misfolded proteins assemble into insoluble aggregates with other proteins and can be toxic for the cells [18, 20]. Ataxin-1 is highly prone to misfolding due to inherited gene defects that cause neurodegenerative diseases (NDDs), which is mainly due the repetition of glutamine within its amino acid chain; the toxicity of this protein being directly proportional to the number of glutamines [23]. There are 21 proteins that mainly interact with ataxin-1 and influence its folding or misfolding, 12 of which increase the toxicity of ataxin-1 for nerve cells, while 9 of the identified proteins reduce its toxicity [23]. Ataxin-1 resembles a double twisted spiral or helix and has a special structure, termed a “coiled coil domain”, that promotes aggregation. Proteins which possess “coiled coil domain” and interact with ataxin-1 have been reported to enhance promotion of ataxin-1 aggregation and toxic effects [24].

The gradual accumulation of misfolded proteins in the absence of their appropriate clearance can cause amyloid disease, the most prevalent one being AD. Parkinson’s disease and Huntington’s disease have similar amyloid origins [25]. These diseases can be sporadic or familial and their incidence increases dramatically with age. The mechanistic explanation for this correlation is that as we age (and are subjected to increasing numbers of mutations and/or oxidative stress causing changes to protein structure, etc.), the delicate balance of the synthesis, folding, and degradation of proteins is disturbed, ensuing in the production, accumulation and aggregation of misfolded proteins [26].

A new study published in Nature reveals how olfactory sensory neurons (OSNs) achieve extraordinary precision in selecting which genes to express.

The mechanism is surprising in that it involves solid-like molecular condensates that last for days, helping to solve a long-standing puzzle in genome organization.

The research, led by Prof. Stavros Lomvardas from Columbia University, addresses one of biology’s most intriguing questions: How do in the nose manage to express only one (OR) gene out of approximately 1,000 available options?

A new study, led by San Diego Zoo Wildlife Alliance, Smithsonian’s National Zoo & Conservation Biology Institute, and additional researchers, offers a unique lens for understanding the unprecedented extinction crisis of native Hawaiian forest birds.

Just 17 out of approximately 60 species of the iconic honeycreeper remain, most of which are facing due to avian malaria. The findings, published in Current Biology, include new evidence that there is still time to save the critically endangered honeycreeper ‘akeke’e—but the window is rapidly closing.

“In a race against time to save the remaining honeycreepers, necessary insights about their survival are found in their ,” said Christopher Kyriazis, Ph.D., lead author and postdoctoral researcher from San Diego Zoo Wildlife Alliance. “Our findings provide a new understanding of the last remaining individuals as recovery efforts forge on in their native forests and in human care.”

Long-read sequencing technologies analyze long, continuous stretches of DNA. These methods have the potential to improve researchers’ ability to detect complex genetic alterations in cancer genomes. However, the complex structure of cancer genomes means that standard analysis tools, including existing methods specifically developed to analyze long-read sequencing data, often fall short, leading to false-positive results and unreliable interpretations of the data.

These misleading results can compromise our understanding of how tumors evolve, respond to treatment, and ultimately how patients are diagnosed and treated.

To address this challenge, researchers developed SAVANA, a new algorithm which they describe in the journal Nature Methods.

Researchers have uncovered that some childhood cancers have a substantially higher number of DNA changes than previously thought, changing the way we view children’s tumors and possibly opening up new or repurposed treatment options.

Concentrating on a type of childhood kidney cancer, known as Wilms tumor, an international team genetically sequenced multiple tumors at a resolution that was previously not possible.

This collaboration included researchers at the Wellcome Sanger Institute, University of Cambridge, Princess Máxima Center for Pediatric Oncology, the Oncode Institute in the Netherlands, Great Ormond Street Hospital, and Cambridge University Hospitals NHS Foundation Trust.

Genetic studies can offer powerful insights for the development of disease-modifying therapies for Alzheimer’s disease. Protective genetic variants that delay the onset of cognitive impairment have been found in people with sporadic Alzheimer’s disease and in carriers of mutations that usually cause autosomal-dominant Alzheimer’s disease in mid-life. The study of families who carry autosomal dominant mutations provides a unique opportunity to uncover genetic modifiers of disease progression, including rare variants in genes such as APOE and RELN.

Tête de Moine, a semi-hard Swiss cheese that often finds its way onto charcuterie boards and salads, not only brings a rich, nutty and creamy flavor, but also adds a dramatic flare to the presentation. Instead of slicing, this cheese is shaved into delicate rosettes using a tool called a Girolle whose rotating blade gently scrapes thin layers of cheese into ruffled curls. These pretty cheese flowers are known to enhance the flavor and texture due to their high surface-to-volume ratio.

The unusual way Tête de Moine forms wrinkles when shaved, piqued the interest of a team of physicists who, in a study published in Physical Review Letters, set out to investigate the physical mechanisms behind these intricate shapes.

Similar morphogenetic patterns can be observed in the frilly edges of leaves, fungi, corals, or even torn , but the mechanisms that explain the similar shapes in these materials fail to account for the distinctive physical properties of .

Scientists have uncovered a critical role for rapid DNA repair in maintaining genome stability. A new study reveals that repair of double-strand breaks (DSBs) in nuclear DNA in plants serves as a powerful safeguard against the integration of foreign DNA from chloroplasts—a phenomenon that, while important for evolution, can be highly destabilizing to the genome. The research expands our knowledge about plant genome evolution and also has relevance to the medical field.

The findings, presented by Dr. Enrique Gonzalez-Duran and Prof. Dr. Ralph Bock from the Max Planck Institute of Molecular Plant Physiology in Nature Plants, shed new light on endosymbiotic gene transfer (EGT)—an ongoing evolutionary process in which genes from organelles such as chloroplasts and mitochondria are relocated into the nuclear genome.

While successful gene transfers help the nucleus to better coordinate its function with that of the organelles, they also pose risks: Mutations arising from DNA insertion can disrupt essential nuclear genes and provoke harmful rearrangements.