Toggle light / dark theme

2D materials design: Material strength and toughness simultaneously achieved through layer twisting

The mechanical strength and toughness of engineering materials are often mutually exclusive, posing challenges for material design and selection. To address this, a research team from The Hong Kong Polytechnic University (PolyU) has uncovered an innovative strategy: by simply twisting the layers of 2D materials, they can enhance toughness without compromising material’s strength.

This breakthrough facilitates the design of strong and tough new 2D materials, promoting their broader applications in photonic and . The findings have been published in Nature Materials.

While 2D materials often exhibit exceptional strength, they are extremely brittle. Fractures in materials are also typically irreversible. These attributes limit the use of 2D materials in devices that require repeated deformation, such as high-power devices, flexible electronics and wearables.

Terabytes of data in a tiny crystal

From punch card-operated looms in the 1800s to modern cellphones, if an object has “on” and “off” states, it can be used to store information.

In a laptop computer, the ones and zeroes that make up the binary language are actually transistors either running at low or high voltage. On a compact disc, the one is a spot where a tiny indented “pit” turns to a flat “land” or vice versa, while a zero represents no change.

Historically, the size of the object cycling through those states has put a limit on the size of the storage device. But now, researchers from the University of Chicago Pritzker School of Molecular Engineering have explored a technique to make the metaphorical ones and zeroes out of crystal defects, each the size of an individual atom, for classical computer memory applications.


UChicago researchers created a ‘quantum-inspired’ revolution in microelectronics, storing classical computer memory in crystal gaps where atoms should be.

Patterns of patterns: Exploring supermoiré engineering

A few years ago, physicists were surprised to learn that stacking and subtly twisting two atomically thin layers of an electronic material like graphene creates a pattern that changes the material’s properties and can even turn it into a superconductor. This superimposed grid, like what would emerge if two window screens were laid slightly askew, is called a moiré pattern.

But why stop there? It turns out adding a third layer, with each layer twisted at slightly different angles, produces even more complex interferences known as supermoiré patterns (aka moiré of moiré). The supermoiré pattern induces profound changes in how electrons move through the material, but until recently, scientists had had trouble measuring exactly what changes occur and why.

Now, applied physicists in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have used a specially designed microscope to probe the properties of supermoiré patterns in trilayer graphene to an extent that was never possible before. Using their microscope, they saw many new states of matter in which electrons would get stuck or form unusual groups, leading to changes in the entire system’s electronic behavior and opening doors to studying layered materials with precisely controllable properties.

Researchers make key advances in radiation detection

Researchers in the Oregon State University College of Engineering have developed new technology for uranium enrichment measurement and trace element detection, vital for nuclear nonproliferation and supporting the development and operation of next-generation nuclear reactors.

“The technology that we are developing can support nuclear safeguards as well as nuclear energy development,” said Haori Yang, associate professor of nuclear science and engineering. “It can enable on-site enrichment measurements with minimal or no sample preparation, which means a quick turnaround time. It can also be used to monitor fuel in Gen-IV nuclear reactors, such as liquid metal–cooled reactors.”

In its naturally occurring state, uranium contains less than 1% U-235, the isotope that can sustain a nuclear chain reaction; the rest is U-238, which is much less able to do so.

New System Lets Multiple Users Share a Single Quantum Computer

PRESS RELEASE — Quantum computers have operated under a significant limitation: they can run only one program at a time. These million-dollar machines demand exclusive use even for the smallest tasks, leaving much of their expensive and fast-running hardware idle and forcing researchers to endure long queues.

Columbia Engineering researchers have developed HyperQ, a novel system that enables multiple users to share a single quantum computer simultaneously through isolated quantum virtual machines (qVMs). This key development brings quantum computing closer to real-world usability—more practical, efficient, and broadly accessible.

“HyperQ brings cloud-style virtualization to quantum computing,” said Jason Nieh, professor of computer science at Columbia Engineering and co-director of the Software Systems Laboratory. “It lets a single machine run multiple programs at once—no interference, no waiting in line.”

Study shows how brain-to-computer ‘electroceuticals’ can help restore cognition

Research led by Thilo Womelsdorf, professor of psychology and biomedical engineering at the Vanderbilt Brain Institute, could revolutionize how brain-computer interfaces are used to treat disorders of memory and cognition.

The study, “Adaptive reinforcement learning is causally supported by and striatum,” was published June 10, 2025, in the journal Neuron.

According to researchers, neurologists use electrical (BCIs) to help patients with Parkinson’s disease and when drugs and other rehabilitative interventions are not efficient. For these disorders, researchers say brain-computer interfaces have become electroceuticals that substitute pharmaceuticals by directly modulating dysfunctional brain signals.

‘Weird shading’ tricks the brain into seeing 3D forms from simple lines

Shading brings 3D forms to life, beautifully carving out the shape of objects around us. Despite the importance of shading for perception, scientists have long been puzzled about how the brain actually uses it. Researchers from Justus-Liebig-University Giessen and Yale University recently came out with a surprising answer.

Previously, it has been assumed that one interprets shading like a physics-machine, somehow “reverse-engineering” the combination of and lighting that would recreate the shading we see. Not only is this extremely challenging for advanced computers, but the visual is not designed to solve that sort of problem. So, these researchers decided to start instead by considering what is known about the brain when it first gets signals from the eye.

“In some of the first steps of visual processing, the brain passes the image through a series of ‘edge-detectors,’ essentially tracing it like an etch-a-sketch,” Professor Roland W. Fleming of Giessen explains. “We wondered what shading patterns would look like to a brain that’s searching for lines.” This insight led to an unexpected, but clever short-cut to the shading inference problem.

New method replaces nickel and cobalt in battery for cleaner, cheaper lithium-ion batteries

A team of McGill University researchers, working with colleagues in the United States and South Korea, has developed a new way to make high-performance lithium-ion battery materials that could help phase out expensive and/or difficult-to-source metals like nickel and cobalt.

The team’s breakthrough lies in creating a better method of producing “disordered rock-salt” (DRX) cathode particles, an alternative battery material. Until now, manufacturers struggled to control the size and quality of DRX particles, which made them unstable and hard to use in manufacturing settings. The researchers addressed that problem by developing a method to produce uniformly sized, highly crystalline particles with no grinding or post-processing required.

“Our method enables mass production of DRX cathodes with consistent quality, which is essential for their adoption in and renewable energy storage,” said Jinhyuk Lee, the paper’s corresponding author and an Assistant Professor in the Department of Mining and Materials Engineering.

We’ll be uploading our entire MINDS to computers by 2045 and our bodies will be replaced by machines within 90 years, Google expert claims

Ray Kurzweil, the director of engineering at Google, has claimed that in just over 30 years, humans will be able to upload their entire minds to computers and become ‘digitally immortal’.