Menu

Blog

Archive for the ‘engineering’ category

Dec 21, 2024

Is solar geoengineering research having its moment?

Posted by in categories: climatology, engineering

There is more research than ever focused on reflecting sunlight away from the planet to cool the climate – but there are still far more questions than answers about the effects.

By James Dinneen

Dec 20, 2024

Scientists Have Finally Cracked the Code of Cellular Communication

Posted by in categories: biotech/medical, engineering, information science

Researchers at UC San Diego have developed SMART, a software package capable of realistically simulating cell-signaling networks.

This tool, tested across various biological systems, enhances the understanding of cellular responses and aids in advancing research in fields like systems biology and pharmacology.

Continue reading “Scientists Have Finally Cracked the Code of Cellular Communication” »

Dec 19, 2024

Nano drug delivery system eliminates need for complicated carriers

Posted by in categories: biotech/medical, chemistry, engineering

A team of University of Melbourne researchers from the Caruso Nanoengineering Group has created an innovative drug delivery system with outstanding potential to improve drug development.

The team has pioneered a that is a coordination network composed of only metal ions and biomolecules, known as metal–biomolecule network (MBN). This system eliminates the need for complicated drug “carriers,” making it potentially more useful in a range of applications.

The research has been published in Science Advances and was led by Melbourne Laureate Professor and NHMRC Leadership Fellow Frank Caruso, from the Department of Chemical Engineering in the Faculty of Engineering and Information Technology, with Research Fellows Dr. Wanjun Xu and Dr. Zhixing Lin joint first authors.

Dec 19, 2024

Could Inducing Lucid Dreams Treat Insomnia and Nightmares?

Posted by in categories: engineering, neuroscience

“Engineering” sleeping consciousness could reduce nightmares, treat insomnia—and even be induce specific dreams just for fun.

By Michelle Carr edited by Mark Fischetti

I routinely control my own dreams. During a recent episode, in my dream laboratory, my experience went like this: I was asleep on a twin mattress in the dark lab room, wrapped in a cozy duvet and a blanket of silence. But I felt like I was awake. The sensation of being watched hung over me. Experimenters two rooms over peered at me through an infrared camera mounted on the wall. Electrodes on my scalp sent them signals about my brain waves. I opened my eyes—at least I thought I did—and sighed. Little specks of pink dust hovered in front of me. I examined them curiously. “Oh,” I then thought, realizing I was asleep, “this is a dream.”

Dec 17, 2024

Research explores nanobubble stability and its real-world implications

Posted by in categories: chemistry, engineering

Gases are essential for many chemical reactions, and bubbles are one way for these gases to be held in solution. When compared to larger bubbles, nanobubbles have increased stability—meaning that they can remain in a solution longer without popping. Due to their increased stability, they allow for higher availability of gases in solution, allowing more time for chemical reactions to occur.

Led by Dr. Hamidreza Samouei, researchers at Texas A&M University are advancing their understanding of what makes nanobubbles—bubbles with diameters smaller than a single strand of hair—so stable and what factors play a role in their stability. Their findings appear in a recent issue of The Journal of Physical Chemistry.

“When we inject gas at the industrial scale, we don’t want to waste that gas. We want to maximize its use for ,” said Samouei, a research assistant professor in the Harold Vance Department of Petroleum Engineering. “That’s the main purpose, to keep the gas in solution for a very, very long time, ideally infinite time; to keep the gas in solution without bursting.”

Dec 15, 2024

Intel foundry customers have successfully powered on 18A node engineering samples

Posted by in categories: business, computing, engineering

Interim Intel co-CEO Michelle Johnston Holthaus announced that the first engineering samples of hardware manufactured with the company’s 18A semiconductor node have been delivered to customers. Her comments aim to reassure industry observers that Intel’s foundry business remains on track to compete with TSMC’s and Samsung’s 3nm and 2nm nodes starting next year.

At the Barclays Annual Global Technology Conference, Holthaus and co-CEO David Zinsner discussed Intel’s upcoming Panther Lake processors, which will debut the 18A process node upon their expected launch in the second half of 2025. Holthaus revealed that eight foundry customers have powered on ES0 (likely “Engineering Sample 0”) chips built on the 18A node, signaling significant progress compared to six months ago.

Intel released version 1.0 of the 18A process design kit in July, enabling customers to begin developing chips based on the node. In August, the company confirmed that internal samples of Panther Lake and Clearwater Forest processors, built on the 18A node, successfully powered on and booted Windows with satisfactory performance. The statements made at the Barclays event mark the first confirmation of 18A usage outside of Intel.

Dec 14, 2024

Light-induced gene therapy disables cancer cells’ mitochondria

Posted by in categories: biotech/medical, engineering, life extension, nanotechnology, neuroscience

Researchers are shining a light on cancer cells’ energy centers—literally—to damage these power sources and trigger widespread cancer cell death. In a new study, scientists combined strategies to deliver energy-disrupting gene therapy using nanoparticles manufactured to zero in only on cancer cells. Experiments showed the targeted therapy is effective at shrinking glioblastoma brain tumors and aggressive breast cancer tumors in mice.

The research team overcame a significant challenge to break up structures inside these cellular energy centers, called mitochondria, with a technique that induces light-activated electrical currents inside the cell. They named the technology mLumiOpto.

“We disrupt the membrane, so mitochondria cannot work functionally to produce energy or work as a signaling hub. This causes programmed followed by DNA damage—our investigations showed these two mechanisms are involved and kill the ,” said co-lead author Lufang Zhou, professor of biomedical engineering and surgery at The Ohio State University. “This is how the technology works by design.”

Dec 14, 2024

Multi-fidelity modeling boosts predictive accuracy of fusion plasma performance

Posted by in categories: engineering, nuclear energy, particle physics, supercomputing

Fusion energy research is being pursued around the world as a means of solving energy problems. Magnetic confinement fusion reactors aim to extract fusion energy by confining extremely hot plasma in strong magnetic fields.

Its development is a comprehensive engineering project involving many advanced technologies, such as , reduced-activation materials, and beam and wave heating devices. In addition, predicting and controlling the confined plasma, in which numerous charged particles and electromagnetic fields interact in complex ways, is an interesting research subject from a physics perspective.

To understand the transport of energy and particles in confined plasmas, theoretical studies, using supercomputers, and experimental measurements of plasma turbulence are being conducted.

Dec 13, 2024

What MIT Scientists Discovered About Manta Rays Is Revolutionizing Water Filtration

Posted by in categories: energy, engineering

MIT engineers have discovered that the mobula ray, a type of filter-feeding aquatic ray, utilizes a unique mechanism to feed and breathe simultaneously, which could revolutionize industrial water filters.

By studying the geometry of the ray’s mouth and gill structures, they developed a blueprint for more efficient filtration systems, balancing permeability with selectivity to enhance performance without increasing energy consumption.

Filter Feeding and Engineering Insights.

Dec 12, 2024

Quantum Psychology, Biology and Engineering

Posted by in categories: biological, engineering, quantum physics

A radical research program in deep design.

Page 1 of 26212345678Last