Scientists develop QLED-inspired shell for nanodiamonds, transforming them into quantum sensors that can operate within living cells.
Category: nanotechnology
Obayashi pursues the potential for the future of the space elevator from a construction standpoint, and describes a newly-designed, whole-space elevator system, including its construction process, which we designed on the basis of work by construction engineers who completed the world’s tallest free-standing tower, TOKYO SKYTREE®, in 2012.
In the following animation, a space elevator which climbs from the Earth Port as a departure port for people to Geostationary Earth Orbit Station at a height of 36,000 km is featured.
The space elevator is planned to be built by the year 2050 with a capacity to carry 100-ton climbers. It is composed of a 96,000-km carbon nanotube cable, a 400-m diameter floating Earth Port and a 12,500-ton counter-weight. Other facilities include Martian/Lunar Gravity Centers, an Low Earth Orbit Gate, a Geostationary Earth Orbit Station, a Mars Gate and a Solar System Exploration Gate.-Jacob’s Ladder 🤔 https://www.obayashi.co.jp/en/news/detail/the_space_elevator…cept.html#
Recent technological advances have opened new possibilities for the efficient and sustainable synthesis of various valuable chemicals. Some of these advances rely on nanotechnologies, systems or techniques designed to design and study materials or devices at the nanometer scale.
Nanoreactors are nanotechnologies designed to host and control chemical reactions within confined spaces. These small structures serve as tiny “reaction vessels” that enable the precise manipulation of the reactants, catalysts and conditions to elicit desired chemical reactions.
Researchers at Inner Mongolia University, Fudan University and Julin University in China recently developed a new paddle-like mesoporous silica nanoreactor that can stir itself when exposed to a rotating magnetic field. This nanoreactor, outlined in a paper published in Nature Nanotechnology, can mix chemicals at a molecular level, enhancing the efficiency of reactions and thus potentially enhancing the synthesis of various compounds.
Augmented reality (AR), the technology that overlays digital content onto what users see around them in real-time, is now widely used in the retail, gaming and entertainment industries, as well as in some educational settings and learning environments. A key component of AR systems are so-called waveguide displays, transparent optical layers that guide light from a projector to the eyes of users, allowing them to see projected images integrated on top of their surrounding environment.
Waveguide displays, mounted on most AR headsets or smart glasses, are typically made up of several substrates and grating couplers (i.e., structures that diffract light into the waveguide). While these multi-layered waveguide displays are widely used, they can sometimes distort colors while also setting limits on the extent to which AR headsets or glasses can be reduced in size.
Researchers at Samsung Electronics and Pohang University of Science and Technology (POSTECH) have recently developed a new single-layer waveguide display that could enable the realization of more compact AR headsets for everyday use while also boosting the brightness and color uniformity of images seen by users. The new display, introduced in a paper published in Nature Nanotechnology, was fabricated using achromatic metagratings, arrays of rectangular nanostructures that diffract red, green and blue light at identical angles.
Metalenses represent a revolutionary advancement in optical technology. Unlike conventional microscope objectives that rely on curved glass surfaces, metalenses employ nanoscale structures to manipulate light at the subwavelength level. Thanks to their ultrathin, lightweight, and flat architectures, metalenses can overcome the bulkiness of traditional lenses, making them ideal candidates for integration in electronic devices and compact imaging systems.
Despite their promising attributes for next-generation optical systems, metalenses face significant challenges in practical microscopy applications. Off-axis aberrations, which severely restrict metalens field of view (FOV) and resolution capabilities, are primary limitations.
The inherent trade-off between imaging resolution and FOV has prevented metalenses from achieving performance comparable to conventional microscopes. Although some prior metalens designs have achieved submicron resolution, they operated with an extremely restricted FOV, limiting their practical utility.
A team of physicists at the University of Cambridge has unveiled a breakthrough in quantum sensing by demonstrating the use of spin defects in hexagonal boron nitride (hBN) as powerful, room-temperature sensors capable of detecting vectorial magnetic fields at the nanoscale. The findings, published in Nature Communications, mark a significant step toward more practical and versatile quantum technologies.
“Quantum sensors allow us to detect nanoscale variations of various quantities. In the case of magnetometry, quantum sensors enable nanoscale visualization of properties like current flow and magnetization in materials leading to the discovery of new physics and functionality,” said Dr. Carmem Gilardoni, co-first author of this study at Cambridge’s Cavendish Laboratory.
“This work takes that capability to the next level using hBN, a material that’s not only compatible with nanoscale applications but also offers new degrees of freedom compared to state-of-the-art nanoscale quantum sensors.”
A pioneering method to simulate how nanoparticles move through the air could boost efforts to combat air pollution, suggests a study in the Journal of Computational Physics.
Tiny particles found in exhaust fumes, wildfire smoke and other forms of airborne pollution are linked with serious health conditions such as stroke, heart disease and cancer, but predicting how they move is notoriously difficult, researchers say.
Now, scientists have developed a new computer modeling approach that dramatically improves the accuracy and efficiency of simulating how nanoparticles behave in the air. In practice, this could mean simulations that can currently take weeks to run could be completed in a matter of hours, the team says.
From smartphones and TVs to credit cards, technologies that manipulate light are deeply embedded in our daily lives, many of which are based on holography. However, conventional holographic technologies have faced limitations, particularly in displaying multiple images on a single screen and in maintaining high-resolution image quality.
Recently, a research team led by Professor Junsuk Rho at POSTECH (Pohang University of Science and Technology) has developed a groundbreaking metasurface technology that can display up to 36 high-resolution images on a surface thinner than a human hair. This research has been published in Advanced Science.
This achievement is driven by a special nanostructure known as a metasurface. Hundreds of times thinner than a human hair, the metasurface is capable of precisely manipulating light as it passes through. The team fabricated nanometer-scale pillars using silicon nitride, a material known for its robustness and excellent optical transparency. These pillars, referred to as meta-atoms, allow for fine control of light on the metasurface.
Putting hypersensitive quantum sensors in a living cell is a promising path for tracking cell growth and diagnosing diseases—even cancers—in their early stages.
Many of the best, most powerful quantum sensors can be created in small bits of diamond, but that leads to a separate issue: It’s hard to stick a diamond in a cell and get it to work.
“All kinds of those processes that you really need to probe on a molecular level, you cannot use something very big. You have to go inside the cell. For that, we need nanoparticles,” said University of Chicago Pritzker School of Molecular Engineering Ph.D. candidate Uri Zvi. “People have used diamond nanocrystals as biosensors before, but they discovered that they perform worse than what we would expect. Significantly worse.”
Wenzhou Medical University researchers have reimagined the spleen as a viable site for islet transplantation, enabling long-term diabetes control without the burden of full immunosuppression. Nanoparticle-driven spleen remodeling allowed transplanted mouse, rat, and human islets to restore normal blood sugar in diabetic rodents and cynomolgus macaques.
In type 1 diabetes, the immune system destroys native beta cells, the insulin-producing cells housed within pancreatic clusters called islets of Langerhans. Islet transplantation transfers these clusters from donor pancreases into the portal vein of the recipient’s liver, where they settle in the hepatic microvasculature. Once in place, they resume insulin secretion to reduce or eliminate injections and restore glycemic control.
Liver-based transplantation has significant drawbacks. Immune attack, low oxygen tension, and the rigidity of hepatic tissue often destroy most transplanted islets within hours. Upward of 70% of cells are destroyed before engraftment, forcing reliance on multiple donors per recipient and blunting therapeutic success.