Menu

Blog

Archive for the ‘cyborgs’ category

Jan 20, 2025

Advancing Prosthetics: Restoring Touch Through Brain Stimulation

Posted by in categories: biotech/medical, cyborgs, neuroscience

Groundbreaking research uses brain stimulation to restore touch in prosthetics. Precise, stable sensations bring natural-like feedback closer, improving motor control and quality of life.


Summary: Researchers are making strides in restoring touch sensations to prosthetic limbs through brain stimulation. By using electrodes in the brain’s touch center, they can evoke stable, precise sensations, even allowing users to feel the shape and motion of objects.

This breakthrough could enable prosthetic users to perform tasks requiring fine motor control with confidence. Long-term tests show consistent sensation locations, critical for real-world usability.

Continue reading “Advancing Prosthetics: Restoring Touch Through Brain Stimulation” »

Jan 13, 2025

Synchron to Advance Implantable Brain-Computer Interface Technology with NVIDIA Holoscan

Posted by in categories: biotech/medical, business, cyborgs, neuroscience, robotics/AI

Second, Synchron will explore the development of a groundbreaking foundation model for brain inference. By processing Synchron’s neural data on an unprecedented scale, this initiative will create scalable, interpretable brain-language models with the potential to transform neuroprosthetics, cognitive expression, and seamless interaction with digital devices.

“Synchron’s vision is to scale neurotechnology to empower humans to connect to the world, and the NVIDIA Holoscan platform provides the ideal foundation,” said Tom Oxley, M.D., Ph.D., CEO & Founder, Synchron. “Through this work, we’re setting a new benchmark for what BCIs can achieve.”


NEW YORK—()— Synchron, a category-defining brain-computer interface (BCI) company, announced today a step forward in implantable BCI technology to drive the future of neurotechnology. Synchron’s BCI technology, in combination with the NVIDIA Holoscan platform, is poised to redefine the possibilities of real-time neural interaction and intelligent edge processing.

Synchron will leverage NVIDIA Holoscan to advance a next-generation implantable BCI in two key domains. First, Synchron will enhance real-time edge AI capabilities for on-device neural processing, improving signal processing and multi-AI inference technology. This will reduce system latency, bolster privacy, and provide users with a more responsive and intuitive BCI experience. NVIDIA Holoscan provides Synchron with: (i) a unified framework supporting diverse AI models and data modalities; (ii) an optimized application framework, from seamless sensor I/O integration, GPU-direct data ingestion, to accelerated computing and real-time AI.

Continue reading “Synchron to Advance Implantable Brain-Computer Interface Technology with NVIDIA Holoscan” »

Jan 13, 2025

Scientists Crack the Code of Titanium’s Strength and Flexibility

Posted by in categories: biotech/medical, chemistry, cyborgs, engineering

A research team from Yokohama National University has developed a novel approach to investigate how the orientation and behavior of electrons in titanium affect its physical properties. Their findings, published in Communications Physics on December 18, 2024, offer valuable insights that could lead to the creation of more advanced and efficient titanium alloys.

Titanium is highly prized for its exceptional resistance to chemical corrosion, lightweight nature, and impressive strength-to-weight ratio. Its biocompatibility makes it an ideal material for medical applications such as implants, prosthetics, and artificial bones, while its strength and durability make it indispensable in aerospace engineering and precision manufacturing.

Jan 6, 2025

Scientists develop technology to control cyborg insect swarms

Posted by in categories: cyborgs, information science, robotics/AI

Scientists have developed an advanced swarm navigation algorithm for cyborg insects that prevents them from becoming stuck while navigating challenging terrain.

Published in Nature Communications, the new algorithm represents a significant advance in . It could pave the way for applications in , search-and-rescue missions, and infrastructure inspection.

Cyborg insects are real insects equipped with tiny electronic devices on their backs—consisting of various sensors like optical and infrared cameras, a battery, and an antenna for communication—that allow their movements to be remotely controlled for specific tasks.

Dec 30, 2024

Stretchable, Flexible, Recyclable: Princeton Scientists Develop Fantastic New Material

Posted by in categories: 3D printing, biotech/medical, chemistry, cyborgs, robotics/AI

Princeton engineers have developed a scalable 3D printing technique to produce soft plastics with customizable stretchiness and flexibility, while also being recyclable and cost-effective—qualities rarely combined in commercially available materials.

In a study published in Advanced Functional Materials, a team led by Emily Davidson detailed how they used thermoplastic elastomers—a class of widely available polymers—to create 3D-printed structures with adjustable stiffness. By designing the 3D printer’s print path, the engineers could program the plastic’s physical properties, allowing devices to stretch and flex in one direction while remaining rigid in another.

Continue reading “Stretchable, Flexible, Recyclable: Princeton Scientists Develop Fantastic New Material” »

Dec 27, 2024

An artificial nerve system gives prosthetic devices and robots a sense of touch

Posted by in categories: biotech/medical, chemistry, cyborgs, robotics/AI

Stanford and Seoul National University researchers have developed an artificial sensory nerve system that can activate the twitch reflex in a cockroach and identify letters in the Braille alphabet.

The work, reported May 31 in Science, is a step toward creating artificial skin for prosthetic limbs, to restore sensation to amputees and, perhaps, one day give robots some type of reflex capability.

“We take skin for granted but it’s a complex sensing, signaling and decision-making system,” said Zhenan Bao, a professor of chemical engineering and one of the senior authors. “This artificial sensory nerve system is a step toward making skin-like sensory neural networks for all sorts of applications.”

Dec 20, 2024

AI-powered algorithm enables personalized age transformation for human faces

Posted by in categories: biotech/medical, cyborgs, information science, life extension

Researchers at University of North Carolina at Chapel Hill and University of Maryland recently developed MyTimeMachine (MyTM), a new AI-powered method for personalized age transformation that can make human faces in images or videos appear younger or older, accounting for subjective factors influencing aging.

This algorithm, introduced in a paper posted to the arXiv preprint server, could be used to broaden or enhance the features of consumer-facing picture-editing platforms, but could also be a valuable tool for the film, TV and entertainment industries.

Continue reading “AI-powered algorithm enables personalized age transformation for human faces” »

Dec 18, 2024

A Factory for Cyborg Insects? Researchers Unveil Mass Production of Robo-Roaches

Posted by in category: cyborgs

The new system can turn cockroaches into cyborgs in under 70 seconds.

Dec 15, 2024

Cockroaches turned into cyborgs in 68 secs with new automated machine

Posted by in categories: cyborgs, robotics/AI, surveillance

Researchers can mass-produce these cyborg cockroaches for disaster relief, surveillance, and environmental monitoring.


Researchers from Singapore have developed a new machine to automatically turn cockroaches into cyborgs in 68 seconds flat.

Continue reading “Cockroaches turned into cyborgs in 68 secs with new automated machine” »

Dec 10, 2024

Muscle Implants Could Allow Mind-Controlled Prosthetics—No Brain Surgery Required

Posted by in categories: biotech/medical, cyborgs, robotics/AI

A year later, he got a myoelectric arm, a type of prosthetic powered by the electrical signals in his residual limb’s muscles. But Smith hardly used it because it was “very, very slow” and had a limited range of movements. He could open and close the hand, but not do much else. He tried other robotic arms over the years, but they had similar problems.

“They’re just not super functional,” he says. “There’s a massive delay between executing a function and then having the prosthetic actually do it. In my day-to-day life, it just became faster to figure out other ways to do things.”

Recently, he’s been trying out a new system by Austin-based startup Phantom Neuro that has the potential to provide more lifelike control of prosthetic limbs. The company is building a thin, flexible muscle implant to allow amputees a wider, more natural range of movement just by thinking about the gestures they want to make.

Page 1 of 13212345678Last