Menu

Blog

Archive for the ‘cosmology’ category

Jan 20, 2025

Quantum gravity discovery could reconcile quantum mechanics with general relativity

Posted by in categories: chemistry, cosmology, quantum physics

New breakthroughs in molecular diffusion and visible singularities, reshaping science with applications in chemistry, physics, and cosmology.

Jan 19, 2025

Space possibly created galaxies on its own, thanks to gravitational waves

Posted by in categories: cosmology, quantum physics

Quantum foam itself released gravitational waves that eventually shaped the cosmic universe.


Over billions of years, these stretched ripples grew into clumps of matter, forming the first stars and galaxies. Eventually, they created a massive network of galaxies and dark matter called the cosmic web, which spans the entire universe today.

A new study suggests that the cosmic web could have formed without relying on inflation driven by a scalar field. Instead, it proposes a novel mechanism that suggests that inflation arises from gravitational wave amplification.

Continue reading “Space possibly created galaxies on its own, thanks to gravitational waves” »

Jan 19, 2025

How cosmic voids help unlock universe’s dark matter secrets

Posted by in category: cosmology

Cosmic voids, which act as bubbles in the cosmic web, help us read the universe better.


Cosmic voids are regions of space that are almost empty, except for a few galaxies and dark matter. But what do they tell us about the universe?

Jan 18, 2025

800 hp in a circle box — Dark Matter engine changes the history of EVs

Posted by in categories: cosmology, engineering, particle physics, sustainability

Meet the Dark Matter, the groundbreaking electric motor powering Koenigsegg’s new Gemera hypercar. Officially known as the Dark Matter Raxial Flux 6-phase E-motor, this revolutionary piece of technology debuted at the 2023 Goodwood Festival of Speed. Boasting an impressive 800 horsepower and 922 lb-ft of torque, while weighing just 40kg, the Dark Matter is hailed as the world’s most powerful automotive-grade electric motor. With its unique six-phase technology, it marks a major leap forward in electric vehicle engineering, surpassing the three-phase motors commonly used in most electric vehicles today.

The Dark Matter electric motor is considered the world’s most powerful automotive-grade motor, using a unique six-phase technology. This motor is a significant improvement over the three-phase motors commonly used in most electric vehicles today. The Dark Matter replaces the previous motor used in the Gemera, called the Quark.

Both the Quark and the Dark Matter are “raxial flux” motors, which combine features of two common types of electric motors: radial flux and axial flux. Radial flux motors offer more power but less torque, while axial flux motors are known for providing high torque but with less power. The key difference between these two designs is how the magnetic field travels through the motor. In a radial flux motor, the magnetic field path is longer, creating more power. In an axial flux motor, the magnetic field follows a shorter, more direct path, giving the motor more torque.

Jan 17, 2025

Cosmic first: supermassive black hole caught “turning on” in real-time

Posted by in category: cosmology

Seven years ago, an outburst in a distant galaxy brightened and faded away. Afterwards, a new supermassive black hole jet emerged, but how?

Jan 17, 2025

First-ever simulation of chaotic sound wave propagation confirms acoustic turbulence theory

Posted by in categories: cosmology, physics, supercomputing

Researchers have pioneered the use of parallel computing on graphics cards to simulate acoustic turbulence. This type of simulation, which previously required a supercomputer, can now be performed on a standard personal computer. The discovery will make weather forecasting models more accurate while enabling the use of turbulence theory in various fields of physics, such as astrophysics, to calculate the trajectories and propagation speeds of acoustic waves in the universe. The research was published in Physical Review Letters.

Turbulence is the complex chaotic behavior of fluids, gases or nonlinear waves in various physical systems. For example, at the ocean surface can be caused by wind or wind-drift currents, while turbulence of laser radiation in optics occurs as light is scattered by lenses. Turbulence can also occur in sound waves that propagate chaotically in certain media, such as superfluid helium.

In the 1970s, Soviet scientists proposed that turbulence occurs when sound waves deviate from equilibrium and reach large amplitudes. The theory of wave turbulence applies to many other wave systems, including magnetohydrodynamic waves in the ionospheres of stars and giant planets, and perhaps even in the early universe. Until recently, however, it has been nearly impossible to predict the propagation patterns of nonlinear (i.e., chaotically moving) acoustic and other waves because of the high computational complexity involved.

Jan 17, 2025

Panorama of Andromeda galaxy unveils hundreds of millions of stars

Posted by in category: cosmology

In the years following the launch of NASA’s Hubble Space Telescope, astronomers have tallied over 1 trillion galaxies in the universe. But only one galaxy stands out as the most important nearby stellar island to our Milky Way—the magnificent Andromeda galaxy (Messier 31). It can be seen with the naked eye on a very clear autumn night as a faint cigar-shaped object roughly the apparent angular diameter of our moon.

A century ago, Edwin Hubble first established that this so-called “spiral nebula” was actually very far outside our own Milky Way galaxy —at a distance of approximately 2.5 million light-years, or roughly 25 Milky Way diameters. Prior to that, astronomers had long thought that the Milky Way encompassed the entire universe. Overnight, Hubble’s discovery turned cosmology upside down by unveiling an infinitely grander universe.

Continue reading “Panorama of Andromeda galaxy unveils hundreds of millions of stars” »

Jan 16, 2025

Hubble reveals surprising spiral shape of galaxy hosting young jet

Posted by in categories: cosmology, materials

The night sky has always played a crucial role in navigation, from early ocean crossings to modern GPS. Besides stars, the United States Navy uses quasars as beacons. Quasars are distant galaxies with supermassive black holes, surrounded by brilliantly hot disks of swirling gas that can blast off jets of material.

Following up on the groundbreaking 2020 discovery of newborn jets in a number of quasars, aspiring naval officer Olivia Achenbach of the United States Naval Academy has used NASA’s Hubble Space Telescope to reveal surprising properties of one of them, quasar J0742+2704.

“The biggest surprise was seeing the distinct spiral shape in the Hubble Space Telescope images. At first I was worried I had made an error,” said Achenbach, who made the discovery during the course of a four-week internship.

Jan 16, 2025

ALICE finds first ever evidence of the antimatter partner of hyperhelium-4

Posted by in categories: cosmology, particle physics, robotics/AI

CERN discovers antihyperhelium-4, the heaviest antimatter particle to date.

Scientists at CERN’s Large Hadron Collider have discovered the heaviest antimatter particle ever observed: antihyperhelium-4.

This exotic particle, the antimatter counterpart of hyperhelium-4, contains two antiprotons, an antineutron, and an antilambda particle. The breakthrough offers insights into the extreme conditions of the early universe and sheds light on the baryon asymmetry problem — why our universe is dominated by matter despite matter and antimatter being created in equal amounts during the Big Bang.

Continue reading “ALICE finds first ever evidence of the antimatter partner of hyperhelium-4” »

Jan 16, 2025

Fresh, direct evidence for tiny drops of quark-gluon plasma

Posted by in categories: cosmology, nuclear energy, particle physics

A new analysis of data from the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) reveals fresh evidence that collisions of even very small nuclei with large ones might create tiny specks of a quark-gluon plasma (QGP). Scientists believe such a substance of free quarks and gluons, the building blocks of protons and neutrons, permeated the universe a fraction of a second after the Big Bang.

RHIC’s energetic smashups of gold ions—the nuclei of gold atoms that have been stripped of their electrons—routinely create a QGP by “melting” these nuclear building blocks so scientists can study the QGP’s properties.

Physicists originally thought that collisions of smaller ions with large ones wouldn’t create a QGP because the small ion wouldn’t deposit enough energy to melt the large ion’s protons and neutrons. But evidence from PHENIX has long suggested that these small collision systems generate particle flow patterns that are consistent with the existence of tiny specks of the primordial soup, the QGP.

Page 1 of 43312345678Last