Menu

Blog

Archive for the ‘biological’ category

Jan 21, 2025

Fundamental Biological Discovery Could Revolutionize Fertilizer Use in Farming

Posted by in categories: biological, food, genetics, sustainability

Researchers at the John Innes Centre have identified a biological mechanism that helps plant roots create a more hospitable environment for beneficial soil microbes. This breakthrough has the potential to promote more sustainable farming practices by reducing the need for synthetic fertilizers.

Most major crops currently rely on nitrate and phosphate fertilizers, but excessive fertilizer use can have harmful environmental consequences. By leveraging the natural, mutually beneficial relationships between plant roots and soil microbes to improve nutrient uptake, it may be possible to significantly cut down on the use of inorganic fertilizers.

Researchers in the group of Dr Myriam Charpentier discovered a mutation in a gene in the legume Medicago truncatula that reprogrammes the signaling capacity of the plant so that it enhances partnerships with nitrogen fixing bacteria called rhizobia and arbuscular mycorrhiza fungi (AMF) which supply roots with phosphorus.

Jan 21, 2025

AI simulates 500 million years of evolution to discover artificial fluorescent protein

Posted by in categories: biological, robotics/AI, time travel

Gould’s thesis has sparked widespread debate ever since, with some advocating for determinism and others supporting contingency. In his 1952 short story A Sound of Thunder, science fiction author Ray Bradbury recounted how a time traveler’s simple act of stepping on a butterfly in the age of the dinosaurs changed the course of the future. Gould made a similar point: “Alter any early event, ever so slightly and without apparent importance at the time, and evolution cascades into a radically different channel.”

Scientists have been exploring this problem through experiments designed to recreate evolution in the lab or in nature, or by comparing species that have emerged under similar conditions. Today, a new avenue has opened up: AI. In New York, a group of former researchers from Meta — the parent company of social networks Facebook, Instagram, and WhatsApp — founded EvolutionaryScale, an AI startup focused on biology. The EvolutionaryScale Model 3 (ESM3) system created by the company is a generative language model — the same kind of platform that powers ChatGPT. However, while ChatGPT generates text, ESM3 generates proteins, the fundamental building blocks of life.

ESM3 feeds on sequence, structure, and function data from existing proteins to learn the biological language of these molecules and create new ones. Its creators have trained it with 771 billion data packets derived from 3.15 billion sequences, 236 million structures, and 539 million functional traits. This adds up to more than one trillion teraflops (a measure of computational performance) — the most computing power ever used in biology, according to the company.

Jan 19, 2025

Geoff Hinton — Will Digital Intelligence Replace Biological Intelligence? | Vector’s Remarkable 2024

Posted by in categories: biological, existential risks, physics, robotics/AI

Vector Institute’s Remarkable 2024 | Geoffrey Hinton — Will Digital Intelligence Replace Biological Intelligence?

In this profound keynote, Vector co-founder Geoffrey Hinton explores the philosophical implications of artificial intelligence and its potential to surpass human intelligence. Drawing from decades of expertise, Hinton shares his growing concerns about AI’s existential risks while examining fundamental questions about consciousness, understanding, and the nature of intelligence itself.

Continue reading “Geoff Hinton — Will Digital Intelligence Replace Biological Intelligence? | Vector’s Remarkable 2024” »

Jan 19, 2025

Scientists Calculated The Ultimate Lifespan of Earth’s Biosphere

Posted by in categories: biological, existential risks

If Earth’s life survives the Anthropocene, it will eventually face another existential threat from space.

As the Sun brightens with age, it will inevitably interfere with our planet’s finicky carbon cycle, triggering a depletion of atmospheric carbon dioxide to the point where plants will starve.

Luckily, this won’t happen until at least 1.6 billion years from now, suggests new research from University of Chicago geophysicist RJ Graham and colleagues. That potentially doubles the projected lifespan of Earth’s plants and animals.

Jan 18, 2025

Unraveling a 500-Million-Year Mystery: Scientists Reveal Ancient Origins of the Ventral Nerve Cord

Posted by in categories: biological, chemistry, physics

An international team of scientists has uncovered a fascinating piece of the evolutionary puzzle: the origin of the ventral nerve cord, a vital part of the central nervous system, in ecdysozoan animals—a group that includes insects, nematodes, and priapulid worms. Their study, published in Science Advances

<em> Science Advances </em> is a peer-reviewed scientific journal established by the American Association for the Advancement of Science (AAAS). It serves as an open-access platform featuring high-quality research across the entire spectrum of science and science-related disciplines. Launched in 2015, the journal aims to publish significant, innovative research that advances the frontiers of science and extends the reach of high-impact science to a global audience. “Science Advances” covers a broad range of topics including, but not limited to, biology, physics, chemistry, environmental science, and social sciences, making it a multidisciplinary publication.

Jan 17, 2025

Surprising Bacterial Communication We’ve Never Seen Before

Posted by in categories: biological, bitcoin, cryptocurrencies, nanotechnology

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about new discoveries about bacterial communication.
Links:
https://www.science.org/doi/10.1126/sciadv.adj1539
https://www.lboro.ac.uk/news-events/news/2025/january/cyanob…formation/
https://en.wikipedia.org/wiki/Prochlorococcus.
https://www.quantamagazine.org/the-ocean-teems-with-networks…-20250106/
Previous video:

#biology #bacteria #biofilm.

Continue reading “Surprising Bacterial Communication We’ve Never Seen Before” »

Jan 17, 2025

Biological Magnetic Sensing Comes Close to Quantum Limit

Posted by in categories: biological, quantum physics

Researchers find that two types of biological magnetic sensor can sense fields close to the quantum limit, a finding that could guide the design of lab-made devices.

Jan 16, 2025

Digital Resurrection: Advanced Simulations Reveal Secrets of Human Evolution

Posted by in categories: biological, computing

Lucy, an early human ancestor, could run upright but much slower than modern humans. New simulations show that muscle and tendon evolution, not just skeletal changes, were key to improving human running speed.

The University of Liverpool has led an international team of scientists in a new investigation into the running abilities of Australopithecus afarensis, the early human ancestor best known through the famous fossil “Lucy.”

Professor Karl Bates, an expert in Musculoskeletal Biology, brought together specialists from institutions in the UK and the Netherlands. Using advanced computer simulations and a digital reconstruction of Lucy’s skeleton, the team explored how this ancient species.

Jan 16, 2025

Gene mutation in roots that enhances microbe partnerships could cut fertilizer use

Posted by in categories: biological, food, genetics

Researchers have discovered a biological mechanism that makes plant roots more welcoming to beneficial soil microbes. This discovery by John Innes Centre researchers paves the way for more environmentally friendly farming practices, potentially allowing farmers to use less fertilizer.

Production of most major crops relies on nitrate and phosphate fertilizers, but excessive fertilizer use harms the environment. If we could use mutually beneficial relationships between and soil microbes to enhance , then we could potentially reduce the use of inorganic fertilizers.

Researchers in the group of Dr. Myriam Charpentier discovered a mutation in a gene in the legume Medicago truncatula that reprograms the signaling capacity of the plant so that it enhances partnerships with nitrogen fixing bacteria called rhizobia and arbuscular mycorrhiza fungi (AMF) which supply roots with phosphorus.

Jan 16, 2025

How Protein Shapes Are Rewriting the Story of Life on Earth

Posted by in categories: biological, genetics

Researchers have innovatively merged protein structural data with genetic sequences to construct evolutionary trees, revealing deep-rooted relationships among species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

Page 1 of 23312345678Last