Toggle light / dark theme

Scientists have discovered a ‘concerning’ secret in the unknown depths of a 410 foot Great Blue Hole.

The mysterious sinkhole is located just off the coast of Belize where experts have managed to extract a sample of material from the bottom.

And now the sediment core they retrieved is revealing secrets from the past six millennia.

Quasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an ordered repeating pattern, QCs display long-range atomic order that is not periodic. Due to this ‘quasiperiodic’ nature, QCs have unconventional symmetries that are absent in conventional crystals.

Since their Nobel Prize-winning discovery, condensed matter physics researchers have dedicated immense attention toward QCs, attempting to both realize their unique quasiperiodic magnetic order and their possible applications in spintronics and .

Ferromagnetism was recently discovered in the gold-gallium-rare earth (Au-Ga-R) icosahedral QCs (iQCs). Yet scientists were not surprised by this observation because translational periodicity—the repeating arrangement of atoms in a crystal—is not a prerequisite for the emergence of ferromagnetic order.

Scientists in Japan have uncovered a surprising twist, literally, in how molecules organize themselves. By introducing tiny leftover fragments from previous assemblies, they discovered a way to flip the direction of helical molecular structures.

Using specific intensities of UV and visible light, they controlled whether these molecules formed left-handed or right-handed spirals, revealing a new method to fine-tune optical and electronic properties. This groundbreaking insight could unlock novel ways to engineer smarter, more responsive materials.

Revealing the power of molecular self-assembly.

A team of biomaterial engineers, environmental resource specialists and industrial design researchers affiliated with a host of institutions across Japan has developed a biodegradable material that is clear and can hold boiling water—and it degrades in less than a year after settling on the ocean floor. Their work is published in the journal Science Advances.

Prior research has shown that millions of tons of plastics are piling up in the environment, including on the . Because of this, scientists have been looking for better, biodegradable replacements. In this new effort, the research team has developed a paper-based, clear, that can stand up to liquids for several hours, even those that have been heated, allowing them to replace plastic cups, straws, and other everyday objects.

The research team made the material by starting with a standard cellulose hydrogel. After drying, the material was treated with an aqueous lithium bromide solution which forced the cellulose to solidify into desired shapes. The researchers note that end-products could be as thin as plastic cup walls, or as thick as desired. They describe the material as tPB, a transparent 3D material made solely of cellulose.

KIMS has developed the world’s first highly flexible and ultra-sensitive ammonia sensor technology, utilizing a low-temperature synthesized copper bromide film. A research team from the Energy & Environmental Materials Research Division at the Korea Institute of Materials Science (KIMS), led

Titanium micro-particles in the oral mucosa around dental implants are common. This is shown in a new study from the University of Gothenburg and Uppsala University, which also identified 14 genes that may be affected by these particles.

Registry data indicate that about 5% of all adults in Sweden have —and potentially also titanium particles in the tissue surrounding the implants. According to the researchers, there is no reason for concern, but more knowledge is needed.

“Titanium is a well-studied material that has been used for decades. It is biocompatible and safe, but our findings show that we need to better understand what happens to the micro-particles over time. Do they remain in the tissue or spread elsewhere in the body?” says Tord Berglundh, senior professor of periodontology at Sahlgrenska Academy, University of Gothenburg.

A research team has developed a technology that dramatically enhances the stability of ultra-thin metal anodes with a thickness of just 20μm. Led by Professor Yu Jong-sung from the Department of Energy Science and Engineering at DGIST, the team proposed a new method using electrolyte additives to address the issues of lifetime and safety that have hindered the commercialization of lithium metal batteries. The work is published in the journal Advanced Energy Materials.

Lithium metal anodes (3,860 mAh g⁻¹) have over 10 times the capacity of widely used graphite anodes (372 mAh g⁻¹) and feature a low standard reduction potential, making them promising candidates for next-generation anode materials. However, during , lithium tends to grow in dendritic forms, causing short circuits and thermal runaway, which leads to lifetime and safety issues. Moreover, due to volume expansion, the solid electrolyte interphase (SEI) repeatedly degrades and reforms, leading to rapid electrolyte depletion.

The use of ultra-thin lithium metal with a thickness below 50μm is essential, especially for the commercialization of lithium metal batteries. However, such issues become more severe as thickness reduces. Accordingly, both academia and industry have focused on SEI engineering to enhance the stability of , among which SEI formation strategies using electrolyte additives have emerged as a simple yet effective approach.

University of Oregon chemists are bringing a greener way to make iron metal for steel production closer to reality, a step towards cleaning up an industry that’s one of the biggest contributors to carbon emissions worldwide. The research was published in ACS Energy Letters.

Last year, UO chemist Paul Kempler and his team reported a way to create iron with electrochemistry, using a series of chemical reactions that turn saltwater and into pure iron metal.

In their latest work, they’ve optimized the starting materials for the process, identifying which kinds of iron oxides will make the chemical reactions the most cost-effective. That’s a key to making the process work at an industrial scale.