Menu

Blog

Archive for the ‘bioengineering’ category: Page 221

Aug 8, 2015

Move over, autonomous AI weapons, there’s a new risk in town: ‘gene drives’

Posted by in categories: bioengineering, biotech/medical, genetics, robotics/AI

Wyss Institute scientists believe that synthetic gene drives, if researched responsibly, might be used in the future to render mosquito populations unable to transmit malaria (credit: CDC)

An international group of 26 experts, including prominent genetic engineers and fruit fly geneticists, has unanimously recommended a series of preemptive measures to safeguard gene drive research from accidental (or intentional) release from laboratories.

RNA-guided gene drives are genetic elements — found naturally in the genomes of most of the world’s organisms — that increase the chance of the gene they carry being passed on to all offspring. So they can quickly spread through populations if not controlled.

Continue reading “Move over, autonomous AI weapons, there’s a new risk in town: ‘gene drives’” »

Aug 4, 2015

Millennium Project releases ’2015–16 State of the Future’ report

Posted by in categories: bioengineering, economics, energy, health, nanotechnology, robotics/AI

The Millennium Project released today its annual “2015–16 State of the Future” report, listing global trends on 28 indicators of progress and regress, new insights into 15 Global Challenges, and impacts of artificial intelligence, synthetic biology, nanotechnology and other advanced technologies on employment over the next 35 years.

“Another 2.3 billion people are expected to be added to the planet in just 35 years,” the report notes. “By 2050, new systems for food, water, energy, education, health, economics, and global governance will be needed to prevent massive and complex human and environmental disasters.”

Read more

Jul 13, 2015

Interconnected Rat Brains Create Organic Computer

Posted by in categories: bioengineering, bionic, biotech/medical, computing, neuroscience

Linked rat brains

Scientists have been experimenting with brain-to-brain interfaces for years. Miguel Nicolelis, a neurobiologist at Duke University Medical Center, has created a “Brainet” or a network of interconnected brains with four rats. With electrodes implanted directly in the cortex rodents exchange information to create an organic computing device. Collectively, they were able to solve computational problems including image processing, storing and recalling information and even predicting precipitation.

Read the full story by Mona Lalwani at Engadget

Jul 2, 2015

Bioengineers develop highly elastic biomaterial for better wound healing

Posted by in categories: bioengineering, biotech/medical

A team of bioengineers at Brigham and Women’s Hospital (BWH), led by Ali Khademhosseini, PhD, and Nasim Annabi, PhD, of the Biomedical Engineering Division, has developed a new protein-based gel that, when exposed to light, mimics many of the properties of elastic tissue, such as skin and blood vessels. …

Read more

Jun 25, 2015

DARPA: We Are Engineering the Organisms That Will Terraform Mars

Posted by in categories: bioengineering, environmental, futurism, military, space

The Pentagon is working on technology that will allow it to engineer a new organism within a day of it being found in the wild.

Read more

Jun 20, 2015

What Happens When We Upload Our Minds? — Maddie Stone | Motherboard

Posted by in categories: bioengineering, biotech/medical, neuroscience

“In a sense, all four pillars of the mind-uploading roadmap—mapping the brain’s structure and function, creating the software and hardware to emulate it—are now areas of active research. If we take Koene’s optimistic view, within a decade, we may have the technological capacity to fully map and emulate a very simple brain—say, that of a Drosophila fruit fly, which contains roughly 100 thousand neurons. ”

Read more

Jun 19, 2015

Towards a body-on-a-chip — The Economist

Posted by in categories: bioengineering, biotech/medical

“What makes organ chips potentially so effective in drug testing is that they create not just the biochemical environment necessary for the cells to thrive but also the physical one…This use of stem cells in organ chips raises the possibility of a device that represents an individual patient—a patient-on-a-chip, if you like. In this case all the tiny organs would be derived from a single person: tests could then be carried out on the device to find what combinations of drugs and dosages work best for that patient.” Read more