Menu

Blog

Archive for the ‘biological’ category: Page 124

Apr 29, 2021

Deep under the ocean, microbes are active and poised to eat whatever comes their way

Posted by in categories: biological, food, space

The subseafloor constitutes one of the largest and most understudied ecosystems on Earth. While it is known that life survives deep down in the fluids, rocks, and sediments that make up the seafloor, scientists know very little about the conditions and energy needed to sustain that life.

An interdisciplinary research team, led from ASU and the Woods Hole Oceanographic Institution (WHOI), sought to learn more about this ecosystem and the microbes that exist in the subseafloor. The results of their findings were recently published in Science Advances, with ASU School of Earth and Space Exploration assistant professor and geobiologist Elizabeth Trembath-Reichert as lead author.

To study this type of remote ecosystem, and the microbes that inhabit it, the team chose a location called North Pond on the western flank of the mid-Atlantic Ridge, a plate boundary located along the floor of the Atlantic Ocean.

Apr 29, 2021

Jennifer Huse — Innovative Scientific Solutions For Revitalizing Camden, NJ, USA — Mayoral Candidate

Posted by in categories: biological, education, health

Innovative, Scientific, And Empathic Solutions For Revitalizing Camden, NJ, USA — Jennifer A. Huse, Mayoral Candidate, 2021


Jennifer Huse is a candidate for Mayor of Camden, New Jersey, USA, running in the upcoming 2021 election, as an independent.

Continue reading “Jennifer Huse — Innovative Scientific Solutions For Revitalizing Camden, NJ, USA — Mayoral Candidate” »

Apr 28, 2021

How close are we to uploading our minds? — Michael S.A. Graziano

Posted by in categories: biological, neuroscience

It points out that to measure down to the synapse the energy needed would melt the tissue of your head.


Investigate the possibility of scanning the human brain and uploading our minds and consciousness to a digital world.

Continue reading “How close are we to uploading our minds? — Michael S.A. Graziano” »

Apr 28, 2021

The Science of Consciousness: Towards the Cybernetic Theory of Mind

Posted by in categories: biological, information science, robotics/AI, science

Consciousness remains scientifically elusive because it constitutes layers upon layers of non-material emergence: Reverse-engineering our thinking should be done in terms of networks, modules, algorithms and second-order emergence — meta-algorithms, or groups of modules. Neuronal circuits correlate to “immaterial” cognitive modules, and these cognitive algorithms, when activated, produce meta-algorithmic conscious awareness and phenomenal experience, all in all at least two layers of emergence on top of “physical” neurons. Furthermore, consciousness represents certain transcendent aspects of projective ontology, according to the now widely accepted Holographic Principle.

#CyberneticTheoryofMind

Continue reading “The Science of Consciousness: Towards the Cybernetic Theory of Mind” »

Apr 27, 2021

New method preserves viable fruit fly embryos in liquid nitrogen

Posted by in categories: biological, cryonics, food, genetics, life extension

Cryopreservation, or the long-term storage of biomaterials at ultralow temperatures, has been used across cell types and species. However, until now, the practical cryopreservation of the fruit fly (Drosophila melanogaster)—which is crucial to genetics research and critical to scientific breakthroughs benefiting human health—has not been available.

“To keep alive the ever-increasing number of with unique genotypes that aid in these breakthroughs, some 160000 different flies, laboratories and stock centers engage in the costly and frequent transfer of adults to fresh food, risking contamination and ,” said Li Zhan, a postdoctoral associate with the University of Minnesota College of Science and Engineering and the Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio).

In new research published in Nature Communications, a University of Minnesota team has developed a first-of-its-kind method that cryopreserves fruit fly embryos so they can be successfully recovered and developed into adult insects. This method optimizes embryo permeabilization and age, cryoprotectant agent composition, different phases of nitrogen (liquid vs. slush), and post-cryopreservation embryo culture methods.

Apr 26, 2021

Advancing AI With a Supercomputer: A Blueprint for an Optoelectronic ‘Brain’

Posted by in categories: biological, chemistry, robotics/AI, supercomputing

Others think we’re still missing fundamental aspects of how intelligence works, and that the best way to fill the gaps is to borrow from nature. For many that means building “neuromorphic” hardware that more closely mimics the architecture and operation of biological brains.

The problem is that the existing computer technology we have at our disposal looks very different from biological information processing systems, and operates on completely different principles. For a start, modern computers are digital and neurons are analog. And although both rely on electrical signals, they come in very different flavors, and the brain also uses a host of chemical signals to carry out processing.

Now though, researchers at NIST think they’ve found a way to combine existing technologies in a way that could mimic the core attributes of the brain. Using their approach, they outline a blueprint for a “neuromorphic supercomputer” that could not only match, but surpass the physical limits of biological systems.

Apr 24, 2021

Making Sense Podcast Special Episode: Engineering the Apocalypse

Posted by in categories: bioengineering, biological, biotech/medical, existential risks, finance, media & arts, robotics/AI, terrorism

In this nearly 4-hour SPECIAL EPISODE, Rob Reid delivers a 100-minute monologue (broken up into 4 segments, and interleaved with discussions with Sam) about the looming danger of a man-made pandemic, caused by an artificially-modified pathogen. The risk of this occurring is far higher and nearer-term than almost anyone realizes.

Rob explains the science and motivations that could produce such a catastrophe and explores the steps that society must start taking today to prevent it. These measures are concrete, affordable, and scientifically fascinating—and almost all of them are applicable to future, natural pandemics as well. So if we take most of them, the odds of a future Covid-like outbreak would plummet—a priceless collateral benefit.

Rob Reid is a podcaster, author, and tech investor, and was a long-time tech entrepreneur. His After On podcast features conversations with world-class thinkers, founders, and scientists on topics including synthetic biology, super-AI risk, Fermi’s paradox, robotics, archaeology, and lone-wolf terrorism. Science fiction novels that Rob has written for Random House include The New York Times bestseller Year Zero, and the AI thriller After On. As an investor, Rob is Managing Director at Resilience Reserve, a multi-phase venture capital fund. He co-founded Resilience with Chris Anderson, who runs the TED Conference and has a long track record as both an entrepreneur and an investor. In his own entrepreneurial career, Rob founded and ran Listen.com, the company that created the Rhapsody music service. Earlier, Rob studied Arabic and geopolitics at both undergraduate and graduate levels at Stanford, and was a Fulbright Fellow in Cairo. You can find him at www.after-on.

Apr 22, 2021

The Fuss Over Phosphorus

Posted by in categories: biological, chemistry, climatology, particle physics, space

Phosphorus, the element critical for life´s origin and life on Earth, may be even Venus.


Scientists studying the origin of life in the universe often focus on a few critical elements, particularly carbon, hydrogen, and oxygen. But two new papers highlight the importance of phosphorus for biology: an assessment of where things stand with a recent claim about possible life in the clouds of Venus, and a look at how reduced phosphorus compounds produced by lightning might have been critical for life early in our own planet’s history.

First a little biochemistry: Phosphine is a reduced phosphorus compound with one phosphorus atom and three hydrogen atoms. Phosphorus is also found in its reduced form in the phosphide mineral schreibersite, in which the phosphorus atom binds to three metal atoms (either iron or nickel). In its reduced form, phosphorus is much more reactive and useful for life than is phosphate, where the phosphorus atom binds to four oxygen atoms. Phosphorus is also the element that is most enriched in biological molecules as compared to non-biological molecules, so it’s not a bad place to start when you’re hunting for life.

Continue reading “The Fuss Over Phosphorus” »

Apr 21, 2021

Approaching a Singularity, When The Number of Humans Alive Will Equal The Number Who Have Ever Died

Posted by in categories: bioengineering, biological, genetics, life extension, nuclear energy, singularity, sustainability

There are several key technologies converging on an inevitable effect, namely a dramatic, explosive increase in human population. Currently around 40% of Earth’s total land area is dedicated to agricultural production to feed seven billion people, but, interestingly, while the human population will increase, the land area required to sustain this population will decrease, approaching zero land area to sustain a trillion human lives. In this era, bulk elements such as gold will have no value, since they will be so easy to produce by fusion separation of elements from bulk rock. Instead, value will be attached to biological material and, most importantly, new technologies themselves.

The several key emerging technologies that make this state of affairs unstoppable are listed along with aspects of their impact:

1) Most important is fusion energy, an unlimited, scalable energy, with no special fuel required to sustain it. This will allow nearly all agriculture to be contained in underground “vertical farm” buildings, extending thousands of feet downwards. Cheap artificially-lighted, climate-controlled environments will allow the maximum efficiency for all food crops. Thus, agriculture will take up close to zero surface area, largely produced underground on Earth or the Moon.

Continue reading “Approaching a Singularity, When The Number of Humans Alive Will Equal The Number Who Have Ever Died” »

Apr 17, 2021

Possible life signs in the clouds of Venus

Posted by in categories: biological, chemistry, space

A new analysis of data from the 1978 Pioneer Venus mission, by researchers at Cal Poly Pomona, finds evidence not only for phosphine, but also possible chemical disequilibrium in Venus’ atmosphere, an additional possible sign of biological activity.