Menu

Blog

Archive for the ‘biological’ category: Page 55

Jul 24, 2023

Scientists Working on Merging AI With Human Brain Cells

Posted by in categories: biological, drones, government, robotics/AI

A team of researchers just got a $600,000 grant from Australia’s Office of National Intelligence to study ways of merging human brain cells with artificial intelligence.

In collaboration with Melbourne-based startup Cortical Labs, the team has already successfully demonstrated how a cluster of roughly 800,000 brain cells in a Petri dish is capable of playing a game of “Pong.”

The basic idea is to merge biology with AI, something that could forge new frontiers for machine learning tech for self-driving cars, autonomous drones, or delivery robots — or at least that’s what the government is hoping to accomplish with its investment.

Jul 24, 2023

Scientists Discover Bacteria That Can Break Down Certain “Forever Chemicals”

Posted by in categories: biological, chemistry, engineering, particle physics

Scientists specializing in chemical and environmental engineering at the University of California, Riverside have discovered two types of bacteria in the soil capable of breaking down a class of stubborn “forever chemicals,” giving hope for low-cost biological cleanup of industrial pollutants.

Assistant Professor Yujie Men and her team at the Bourns College of Engineering have found that these bacteria are able to eradicate a specific subgroup of per-and poly-fluoroalkyl substances, known as PFAS, particularly those that contain one or more chlorine atoms within their chemical structure. Their findings were published in the scientific journal, Nature Water.

Unhealthful forever chemicals persist in the environment for decades or much longer because of their unusually strong carbon-to-fluorine bonds. Remarkably, the UCR team found that the bacteria cleave the pollutant’s chlorine-carbon bonds, which starts a chain of reactions that destroy the forever chemical structures, rendering them harmless.

Jul 21, 2023

Computer chip with built-in human brain tissue gets military funding

Posted by in categories: biological, computing, military, neuroscience

I gotta admit although effective and innovative, it’s also kinda creepy.


Last year, Monash University scientists created the “DishBrain” – a semi-biological computer chip with some 800,000 human and mouse brain cells lab-grown into its electrodes. Demonstrating something like sentience, it learned to play Pong within five minutes.

The micro-electrode array at the heart of the DishBrain was capable both of reading activity in the brain cells, and stimulating them with electrical signals, so the research team set up a version of Pong where the brain cells were fed a moving electrical stimulus to represent which side of the “screen” the ball was on, and how far away from the paddle it was. They allowed the brain cells to act on the paddle, moving it left and right.

Continue reading “Computer chip with built-in human brain tissue gets military funding” »

Jul 19, 2023

Scientists use supercomputer to learn how cicada wings kill bacteria

Posted by in categories: biological, chemistry, engineering, nanotechnology, supercomputing

Over the past decade, teams of engineers, chemists and biologists have analyzed the physical and chemical properties of cicada wings, hoping to unlock the secret of their ability to kill microbes on contact. If this function of nature can be replicated by science, it may lead to development of new products with inherently antibacterial surfaces that are more effective than current chemical treatments.

When researchers at Stony Brook University’s Department of Materials Science and Chemical Engineering developed a simple technique to duplicate the cicada wing’s nanostructure, they were still missing a key piece of information: How do the nanopillars on its surface actually eliminate bacteria? Thankfully, they knew exactly who could help them find the answer: Jan-Michael Carrillo, a researcher with the Center for Nanophase Materials Sciences at the Department of Energy’s Oak Ridge National Laboratory.

For nanoscience researchers who seek computational comparisons and insights for their experiments, Carrillo provides a singular service: large-scale, high-resolution molecular dynamics (MD) simulations on the Summit supercomputer at the Oak Ridge Leadership Computing Facility at ORNL.

Jul 16, 2023

We can’t predict the future, but appreciating its uncertainties will make us happier

Posted by in categories: biological, evolution, mathematics, neuroscience

In it, he explores how we can make better, scientifically informed predictions about the world around us, using maths. “Mathematics can provide us with the objective tools to bypass the foibles of our own biology – the limitations imposed by our own thought processes, the compulsions that ultimately make us human, but let us down when it comes to making inferences about the world around us,” he writes. “They are humanity’s shortcuts: the preconceptions and cognitive biases, refined over millennia of evolution, that all too often lead us astray when we try to apply our brain’s old rules to our society’s new environments.”

No matter how tempting it is to think, “Ooh, that’s a bit spooky” when faced with a completely random coincidence or chance occurrence, we should all be expecting unusual things to happen all the time, he says.

Yates describes a person who, when browsing in a secondhand bookshop far from where they grew up, opens a copy of their favourite children’s book, only to find their own name inscribed inside. Yet, he says, “the law of truly large numbers” dictates that, just as someone wins the lottery almost every week, with enough opportunities, such extraordinary coincidences are far more likely to happen than you might think. “There are so many different types of coincidences that make us say: ‘Well, that’s extraordinary.’ But it’s not unlikely that some of them happen to us every so often.”

Jul 14, 2023

The code breakers: Harnessing the power of AI to understand what animals say

Posted by in categories: biological, robotics/AI

An international group of experts argue that tackling the long-standing challenge of decoding the communication systems of whales, crows, bats, and other animals is coming within reach, following breath-taking advances in artificial intelligence (AI) research.

In an article published in Science, led by Professor Christian Rutz from the School of Biology at the University of St Andrews, the authors explain how cutting-edge machine-learning tools could provide transformative insights into the hidden lives of animals, with important implications for their conservation.

The prospect of understanding what animals say to each other, or of even initiating a conversation with another species, has fired humans’ imagination for millennia. But since there is no Rosetta Stone for translating animals’ communication signals, their meaning must be deciphered through careful observation and experimentation. Despite good research progress over the past few decades, collecting and analyzing data is a challenging task. For example, annotating recordings of bird calls, whale songs or primate gestures is time-consuming, and even experienced biologists often struggle to differentiate seemingly similar signal types.

Jul 12, 2023

Optoelectronics Nanotechnology Innovation: MIT Grows Precise Arrays of nanoLEDs

Posted by in categories: biological, chemistry, nanotechnology, physics

A new technique produces perovskite nanocrystals right where they’re needed, so the exceedingly delicate materials can be integrated into nanoscale.

The nanoscale refers to a length scale that is extremely small, typically on the order of nanometers (nm), which is one billionth of a meter. At this scale, materials and systems exhibit unique properties and behaviors that are different from those observed at larger length scales. The prefix “nano-” is derived from the Greek word “nanos,” which means “dwarf” or “very small.” Nanoscale phenomena are relevant to many fields, including materials science, chemistry, biology, and physics.

Jul 12, 2023

Photosynthesis is nearly 100% efficient. A quantum experiment shows why

Posted by in categories: biological, quantum physics

All biological systems are wildly disordered. Yet somehow, that disorder enables plant photosynthesis to be nearly 100% efficient.

Jul 6, 2023

Transcription Factors Can Bind RNA & Have a Big Impact

Posted by in categories: biological, chemistry

Some transcription factors are known as master regulators, and they can have an impact on many different biochemical pathways and processes in cells. | Cell And Molecular Biology.

Jul 6, 2023

A Harvard genetics professor who only sleeps 6 hours a night and doesn’t exercise every day swears 3 habits helped reverse his biological age by a decade

Posted by in categories: biological, genetics, life extension, neuroscience

In an interview with GQ, 54-year-old David Sinclair says his lifestyle changes got him back to his “20-year-old brain.”

Page 55 of 224First5253545556575859Last