Menu

Blog

Archive for the ‘biotech/medical’ category: Page 215

Jun 3, 2024

A Neurodevelopmental Disorder Affecting Thousands is Discovered

Posted by in categories: biotech/medical, genetics, neuroscience

For decades, the study of genetic disease was focused on genes that code for protein. But scientists have now identified a novel neurodevelopmental disorder that is caused by mutations in a gene that does not code for protein, called RNU4-2. These mutations lead to neurological symptoms that cause cognitive dysfunction, but have not previously been linked together as one disease. These findings have been reported in Nature Medicine.

In this work, the investigators analyzed whole-genome sequencing data from over 5,000 cases of intellectual disability and over 46,000 unaffected individuals. The research focused on unusual variations in the sequences of 41,132 genes that do not code for protein. The research revealed a gene that is apparently a common cause of neurodevleopmental problems. The scientists also determined that these mutations often arise spontaneously, and are not usually inherited from a parent.

Jun 3, 2024

AI tool helps determine if immunotherapy drugs are effective for treating a patient’s cancer

Posted by in categories: biotech/medical, robotics/AI

Researchers at NCI and Memorial Sloan Kettering Cancer Center have developed an artificial intelligence (AI) tool that uses routine clinical data to predict whether someone’s cancer will respond to immune checkpoint inhibitors, a type of immunotherapy drug that helps immune cells kill cancer cells.


AI tool uses routine clinical data to predict whether someone’s cancer will respond to immune checkpoint inhibitors.

Jun 3, 2024

50 Years Ago, Chimeras Gave a Glimpse of Gene Editing’s Future

Posted by in categories: bioengineering, biotech/medical

Advances in gene editing technology have led to the first successful transplant of a pig kidney into a human.

Jun 3, 2024

Editing without ‘cutting’: Molecular mechanisms of new gene-editing tool revealed

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Joint research led by Yutaro Shuto, Ryoya Nakagawa, and Osamu Nureki of the University of Tokyo determined the spatial structure of various processes of a novel gene-editing tool called “prime editor.” Functional analysis based on these structures also revealed how a “prime editor” could achieve reverse transcription, synthesizing DNA from RNA, without “cutting” both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments. The findings were published in the journal Nature.

The 2020 Nobel Prize in Chemistry was awarded to Jennifer Doudna and Emmanuelle Charpentier for developing a groundbreaking yet simple way to edit DNA, the “blueprint” of living organisms. While their discovery opened new avenues for research, the accuracy of the method and safety concerns about “cutting” both strands of DNA limited its use for gene therapy treatments. As such, research has been underway to develop tools that do not have these drawbacks.

The prime editing system is one such tool, a molecule complex consisting of two components. One component is the prime editor, which combines a SpCas9 protein, used in the first CRISPR-Cas gene editing technology, and a reverse transcriptase, an enzyme that transcribes RNA into DNA. The second component is the prime editing guide RNA (pegRNA), a modified guide RNA that identifies the target sequence within the DNA and encodes the desired edit. In this complex, the prime editor works like a “word processor,” accurately replacing genomic information. The tool has already been successfully implemented in living cells of organisms such as plants, zebrafish, and mice. However, precisely how this molecule complex executes each step of the editing process has not been clear, mostly due to a lack of information on its spatial structure.

Jun 3, 2024

Largest Genome on Earth Revealed, And It’s a Big Surprise

Posted by in category: biotech/medical

A small, seemingly unremarkable fern that only grows on a remote Pacific island was on Friday crowned the Guinness World Record holder for having the largest genome of any organism on Earth.

The New Caledonian fern, Tmesipteris oblanceolata, has more than 50 times more DNA packed into the nucleus of its cells than humans do.

If the DNA from one of the fern’s cells – which are just a fraction of a millimetre wide – were unravelled, it would stretch out to 106 metres (350 feet), scientists said in a new study.

Jun 2, 2024

The Andromeda Strain

Posted by in category: biotech/medical

Directed with clinical precision by Academy Award winner Robert Wise, this compelling account of the earth’s first biological crisis is perhaps the most chillingly realistic science fiction thriller ever made. After an errant satellite crashes on Earth near a remote New Mexico village, the recovery team discovers that almost everyone in the town are victims of a horrible death, with the mysterious exception of an infant and an old homeless man. The survivors are brought to a state-of-the-art laboratory descending five stories beneath the ground where the puzzled scientists race against time to determine the nature of the deadly microbe before it wreaks worldwide havoc. A trailblazer in the areas of special effects and inventive sets, The Andromeda Strain is based on Michael Crichton’s best-selling novel that created national paranoia for its topical relevance to the first moon landing.

Jun 2, 2024

A Gene Editing Treatment That Takes Aim at Herpes Infections

Posted by in categories: bioengineering, biotech/medical, neuroscience

It’s estimated that almost half of the world’s population — about 3.7 billion people under the age of 50 — are infected with (HSV-1), which can cause oral herpes. About half a billion people between the ages of 15 and 49 are infected with herpes simplex virus-2 (HSV-2), the cause of genital herpes. There are therapeutics that can eliminate some symptoms of herpes, like blisters, but there is no cure for the infection, and those who are infected can spread the virus to others. Studies have suggested that HSV-1 may increase the risk of dementia, and HSV-2 raises the risk of HIV infection.

Scientists have now developed a gene therapy that can eliminate as much as 90 percent of oral herpes and 97 percent of genital herpes infections in pre-clinical mouse models. The gene therapy also reduced the level of virus that was released from an individual in a mouse model of the infection. These reductions took about one month to be completed, and more of the virus seemed to be eliminated over time. The work has been reported in Nature Communications.

Jun 2, 2024

Cancer patients often do better with less intensive treatment, new research finds

Posted by in category: biotech/medical

Scaling back treatment for three kinds of cancer can make life easier for patients without compromising outcomes, doctors reported at the world’s largest cancer conference.

It’s part of a long-term trend toward studying whether doing less — less surgery, less chemotherapy or less radiation — can help patients live longer and feel better. The latest studies involved ovarian and esophageal cancer and Hodgkin lymphoma.

Thirty years ago, cancer research was about doing more, not less. In one sobering example, women with advanced breast cancer were pushed to the brink of death with massive doses of chemotherapy and bone marrow transplants. The approach didn’t work any better than chemotherapy and patients suffered.

Jun 2, 2024

Drug that ‘melts away’ tumours could replace surgery for bowel cancer, say doctors

Posted by in category: biotech/medical

All patients in pembrolizumab trial were found to be cancer-free after combination of drug and surgery.

Jun 2, 2024

COMBI-Tweez: a new nanotechnology to study the molecule of life

Posted by in categories: biotech/medical, nanotechnology

Researchers based at the Dept of Biology and School of Physics, Engineering and Technology have developed a remarkable new technology which is able to study single biological molecules using intrinsic twist properties to bring about essential functions in cells.

“Nano twists” that drive life

There are myriad so-called “chiral” molecules in biology, which have a fascinating property of not appearing to have the same structure were you to look at their image in a mirror — one of the best known examples being DNA, the “molecule of life”, whose chirality comes from its amazing double helix structure. This chirality, which looks in the case of extended DNA molecules like “nano twists”, results in a property which physicists describe as “symmetry breaking” which in turn can drive molecules into a range of different states. With input from sources of energy, these molecules can then jump between different states as part of their normal function, and it is this state jumping which essentially drives all processes in living cells — so chirality is an enormously fundamental feature which in effect effect steers key cellular processes.

Page 215 of 2,816First212213214215216217218219Last