Menu

Blog

Archive for the ‘biotech/medical’ category: Page 33

Nov 27, 2024

Scientists identify immune molecule that keeps Metabolism in tune and on time

Posted by in categories: biotech/medical, food

Recent research reveals that the immune system interacts with the body’s internal clock, influencing both fat storage and temperature regulation.

The discovery hints at why shift workers and others with irregular work, eating, or sleep patterns driven by the demands of modern life fall out of metabolic sync, and may hold potential for developing therapies to address obesity and prevent wasting.

The key finding—that an immune molecule within adipose (fat) tissue, known as interleukin-17A (IL-17A), plays a regulatory role in fat storage—holds significant therapeutic potential for addressing obesity, preventing wasting, and mitigating other metabolic disorders. By targeting this molecule, drug developers may gain a valuable new pathway for creating treatments aimed at these conditions.

Nov 27, 2024

Revolutionizing Drug Discovery: Scientists Develop World’s First Single-Atom Editing Technology

Posted by in categories: biotech/medical, innovation

KAIST researchers have developed a groundbreaking single-atom editing technology using light-powered “molecular scissors” to convert oxygen atoms into nitrogen in drug compounds, simplifying drug development and boosting efficacy.

In the field of pioneering drug development, a groundbreaking new technology that enables the precise and rapid editing of key atoms critical to drug efficacy has been hailed as a transformative and “dream” innovation, revolutionizing the process of discovering potential drug candidates. Researchers at KAIST have achieved a world-first by successfully developing single-atom editing technology designed to maximize drug efficacy.

On October 8th, KAIST (represented by President Kwang-Hyung Lee) announced that Professor Yoonsu Park’s research team from the Department of Chemistry successfully developed technology that enables the easy editing and correction of oxygen atoms in furan compounds into nitrogen atoms, directly converting them into pyrrole frameworks, which are widely used in pharmaceuticals.

Nov 27, 2024

Ring resonators unlock new abilities in acoustic tweezers

Posted by in category: biotech/medical

Over the past several decades, researchers have been getting better and better at manipulating tiny particles with acoustic waves. Dubbed “acoustic tweezers,” the technology started with the simplistic trapping of particles and has since expanded to include the precise rotation and movement of cells and organisms in three dimensions.

These abilities make the technology well suited to address challenges in biological studies, medical diagnostics and therapeutics through the precise, dexterous, biocompatible manipulation of bioparticles.

In a new paper published in the journal Science Advances, engineers from Duke University demonstrate an entirely new approach to the technology using “ring resonators.” With the ability to carry out tasks with high precision while requiring much lower power inputs, the work could inspire a new generation of these devices.

Nov 27, 2024

Labeling cell particles with barcodes

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Cell-to-cell communication through nanosized particles, working as messengers and carriers, can now be analyzed in a whole new way, thanks to a new method involving CRISPR gene-editing technology. The particles, known as small extracellular vesicles (sEVs), play an important role in the spread of disease and as potential drug carriers. The newly developed system, named CIBER, enables thousands of genes to be studied at once, by labeling sEVs with a kind of RNA “barcode.” With this, researchers hope to find what factors are involved in sEV release from host cells. This will help advance our understanding of basic sEV biology and may aid in the development of new treatments for diseases, such as cancer.

Your body “talks” in more ways than one. Your cells communicate with each other, enabling your different parts to function as one team. However, there are still many mysteries surrounding this process. Extracellular vesicles (EVs), small particles released by cells, were previously thought to be useless waste. However, in recent decades they have been dramatically relabeled as very important particles (VIPs), due to their association with various diseases, including cancer, neurodegenerative diseases and age-related diseases.

Small EVs have been found to play a key role in cell-to-cell communication. Depending on what “cargo” they carry from their host cell (which can include RNA, proteins and lipids), sEVs can help maintain normal tissue functions or can further the spread of diseases. Because of this, researchers are interested in how sEVs form and are released. However, separating sEVs from other molecules and identifying the factors which lead to their release is both difficult and time-consuming with conventional methods. So, a team in Japan has developed a new technique.

Nov 26, 2024

Inside the Laboratory for Extraordinary Microbes

Posted by in categories: biotech/medical, genetics

An exciting Focused Research Organization (FRO): is systematically developing tools for working with non-model microorganisms.


As we walked, Lee told me that’s efforts to make “extraordinary” organisms accessible almost always follow the same basic steps. First, the team orders a microbe from ATCC, a non-profit group that has been storing and mailing microbes to researchers since 1925. The ATCC catalog includes more than 14,000 bacterial strains, the vast majority of which gather dust and are rarely ordered by researchers.

After receiving a microbe in the mail, sequences it. Mutations can creep into strains over time, and even a seemingly minor alteration—a single base swapped here or there—can change how cells grow and respond to their environment.

Continue reading “Inside the Laboratory for Extraordinary Microbes” »

Nov 26, 2024

Pulsed Field Ablation Procedures Found Safe and Effective for Atrial Fibrillation Patients

Posted by in category: biotech/medical

The “MANIFEST-17K” international study is the first to show important…


Pulsed field ablation (PFA) is safe for treating patients with common types of atrial fibrillation (AF), according to the largest study of its kind on this new technology, led by the Icahn School of Medicine at Mount Sinai.

Continue reading “Pulsed Field Ablation Procedures Found Safe and Effective for Atrial Fibrillation Patients” »

Nov 26, 2024

Understanding Walking Pneumonia in Kids

Posted by in category: biotech/medical

Learn all about the difference between regular pneumonia and walking pneumonia in kids and when to take your child to the doctor.

Nov 26, 2024

New CRISPR system pauses genes, rather than turning them off permanently

Posted by in categories: bioengineering, biotech/medical

Researchers in Lithuania present the molecular structure of a new, more-versatile CRISPR system for gene editing.

Nov 26, 2024

Checkpoint molecules, Tregs and induction of anti-tumor immunity

Posted by in category: biotech/medical

Expression of co-inhibitory receptors or “checkpoint” molecules, such as CTLA-4 and PD-1, on effector T cells is a key mechanism for ensuring immune homeostasis. Dysregulated expression of co-inhibitory receptors on CD4+ T cells promotes autoimmunity while sustained overexpression on CD8+ T cells promotes T cell dysfunction or exhaustion, leading to impaired ability to clear chronic viral infections and cancer. Immune checkpoint blockade (ICB) treatment by blocking CTLA-4 and PD-1 has revolutionized cancer therapies, yet current ICB response rates are still relatively low. This suggests the need to discover novel checkpoint molecules and cell types where checkpoint molecules may be exerting additional or differential effects. We and others have discovered additional checkpoint molecules, including Tim-3, Lag-3, and TIGIT. Using RNA and protein expression profiling at single-cell resolution, we discovered that the checkpoint molecules are expressed as a module that is co-expressed and co-regulated on CD8+ T cells, where they cooperatively induce T cell dysfunction. The same module of checkpoint molecules is also expressed on FoxP3+ Tregs, but their role in regulating immunity and anti-tumor immunity has not been fully appreciated. We have conditionally deleted checkpoint molecules on various cell types including Foxp3+ Tregs and studied their role in regulating autoimmunity, tumor growth, and anti-tumor immunity. Studies with a number of the co-inhibitory molecules on effector T cells, Tregs, and dendritic cells in regulating anti-tumor immunity will be discussed.

Learning Objectives

Nov 26, 2024

Nasal Spray Drug Shows Promise in Animal Models of Alzheimer’s

Posted by in categories: biotech/medical, neuroscience

A nasal spray drug can counteract the cognitive decline and brain damage typical of Alzheimer’s disease in animal models.

Page 33 of 2,787First3031323334353637Last