Menu

Blog

Archive for the ‘biotech/medical’ category: Page 82

Nov 10, 2024

Did egg or chicken come first? A protist suggests it was the egg!

Posted by in categories: biotech/medical, genetics

The world is full of unusual unicellular organisms and microbes, many of which have not been discovered yet. In 2017, scientists identified a single-celled marine organism called Chromosphaera perkinsii in sediments collected from Hawaii. This species is estimated to be over a billion years old, making it older than the world’s most ancient animals. Researchers determined that this species has significant similarities to some animal embryos, though it is typically unicellular. The findings, which have been reported in Nature, suggested that some of the genetic mechanisms underlying complex life are present in C. perkinsii, or that it has evolved those characteristics independently.

The investigators noted that this study seems to answer the question of whether the chicken came before the egg; it was apparently the egg, since the genetic tools for making eggs existed prior to the emergence of chickens.

Nov 10, 2024

Real-Life Star Wars Tech: MIT Researchers Have Created a Miniature “Tractor Beam” To Capture Cells

Posted by in categories: biotech/medical, computing, tractor beam

MIT researchers have developed a miniature, chip-based “tractor beam,” like the one that captures the Millennium Falcon in the film “Star Wars,” that could someday help biologists and clinicians study DNA, classify cells, and investigate the mechanisms of disease.

Small enough to fit in the palm of your hand, the device uses a beam of light emitted by a silicon-photonics chip to manipulate particles millimeters away from the chip surface. The light can penetrate the glass cover slips that protect samples used in biological experiments, enabling cells to remain in a sterile environment.

Traditional optical tweezers, which trap and manipulate particles using light, usually require bulky microscope setups, but chip-based optical tweezers could offer a more compact, mass-manufacturable, broadly accessible, and high-throughput solution for optical manipulation in biological experiments.

Nov 10, 2024

International Conference on Holodecks: Five Key Takeaways

Posted by in categories: biotech/medical, virtual reality

Shaking hands with a character from the Fortnite video game. Visualizing a patient’s heart in 3D—and “feeling” it beat. Touching the walls of the Roman Coliseum—from your sofa in Los Angeles. What if we could touch and interact with things that aren’t physically in front of us? This reality might be closer than we think, thanks to an emerging technology: the holodeck.

The name might sound familiar. In Star Trek’s Next Generation, a holodeck was an advanced 3D virtual reality world that created the illusion of solid objects. Now, immersive technology researchers at USC and beyond are taking us one step closer to making this science fiction concept a science fact.

Continue reading “International Conference on Holodecks: Five Key Takeaways” »

Nov 10, 2024

Move Over Plastics: Revolutionary Soft, Sustainable Material Set To Transform Medical Devices and Wearable Tech

Posted by in categories: biotech/medical, computing, nanotechnology, wearables

Step aside, hard and rigid materials — a new soft, sustainable electroactive material is here, ready to unlock new possibilities for medical devices, wearable technology, and human-computer interfaces.

Using peptides and a snippet of the large molecules in plastics, Northwestern University materials scientists have developed materials made of tiny, flexible nano-sized ribbons that can be charged just like a battery to store energy or record digital information. Highly energy efficient, biocompatible, and made from sustainable materials, the systems could give rise to new types of ultralight electronic devices while reducing the environmental impact of electronic manufacturing and disposal.

The study was recently published in the journal Nature.

Nov 10, 2024

Anastasis: cell recovery mechanisms and potential role in cancer

Posted by in category: biotech/medical

Balanced cell death and survival are among the most important cell development and homeostasis pathways that can play a critical role in the onset or progress of malignancy steps. Anastasis is a natural cell recovery pathway that rescues cells after removing the apoptosis-inducing agent or brink of death. The cells recuperate and recover to an active and stable state. So far, minimal knowledge is available about the molecular mechanisms of anastasis. Still, several involved pathways have been explained: recovery through mitochondrial outer membrane permeabilization, caspase cascade arrest, repairing DNA damage, apoptotic bodies formation, and phosphatidylserine. Anastasis can facilitate the survival of damaged or tumor cells, promote malignancy, and increase drug resistance and metastasis.

Nov 10, 2024

Anastasis induced by bee venom in normal cells compared to persistent cell death in breast cancer cells

Posted by in category: biotech/medical

Anastasis is a phenomenon that has been recently defined as a return from induced apoptosis. Its mechanism has not been clearly elucidated. Anastasis is thought to be involved in the development of drug resistance in cancer cells, however the distinct regulation of anastasis in normal and cancerous cells during anti-cancer therapy has not been discovered. One of the most privileged therapy strategies focuses on the drugs that are selectively cytotoxic in cancer cells but not negatively affect normal cell proliferation. This study for the first time comparatively evaluated the anastatic effect of a common synthetic cytotoxic agent, cisplatin and a natural cytotoxic agent, bee venom. The study showed that bee venom induced anastasis in normal cells (MCF10A, NIH3T3 and ARPE19) but cancer cells (MDA-MB-231 and MCF7) were irreversibly in cell death process.

Nov 10, 2024

Frontiers: Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only

Posted by in categories: biotech/medical, chemistry, food, nanotechnology

After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.

Bees are commercially beneficial insects that have been around since the Cretaceous age of the Mesozoic Era. They also help fertilize many different crops. Bees are helpful, but their capacity to administer excruciating and poisonous stings constitutes a risk. Thankfully, most honeybees are not hostile to people and only resort to violence if they perceive danger (Pucca et al., 2019). Apis mellifera is the most often used honeybee species for agricultural pollination globally. All bee products, particularly venom, and honey, have been used for centuries, and their medicinal properties have been described in holy writings such as the Bible and the Quran (Ali, 2024; Dinu et al., 2024). Bee venom (BV) treatment involves injecting honeybee venom into the human body to cure various ailments. For over 5,000 years, this technique has been used in complementary therapies.

Nov 10, 2024

“Astonishing” — Scientists Unveil First Blueprint of the Most Complex Molecular Machine in Human Biology

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Scientists at the Centre for Genomic Regulation (CRG) in Barcelona have developed the first comprehensive blueprint of the human spliceosome, the most complex and intricate molecular machine found in every cell. This groundbreaking achievement, over a decade in the making, was published in the journal Science.

The spliceosome edits genetic messages transcribed from DNA, allowing cells to create different versions of a protein from a single gene. The vast majority of human genes – more than nine in ten – are edited by the spliceosome. Errors in the process are linked to a wide spectrum of diseases including most types of cancer, neurodegenerative conditions, and genetic disorders.

The sheer number of components involved and the intricacy of its function has meant the spliceosome has remained elusive and uncharted territory in human biology – until now.

Nov 10, 2024

Can Lymphocytes And RDW Be Optimized Towards Youth? (51-Test Analysis)

Posted by in category: biotech/medical

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links/Affiliates: Blood testing (where I get my labs): https://www.ultalabtests.com/

Nov 10, 2024

An easier-to-use technique for storing data in DNA is inspired by our cells

Posted by in categories: biotech/medical, chemistry, genetics

The new method, published in Nature last week, is more efficient, storing 350 bits at a time by encoding strands in parallel. Rather than hand-threading each DNA strand, the team assembles strands from pre-built DNA bricks about 20 nucleotides long, encoding information by altering some and not others along the way. Peking University’s Long Qian and team got the idea for such templates from the way cells share the same basic set of genes but behave differently in response to chemical changes in DNA strands. “Every cell in our bodies has the same genome sequence, but genetic programming comes from modifications to DNA. If life can do this, we can do this,” she says.

Qian and her colleagues encoded data through methylation, a chemical reaction that switches genes on and off by attaching a methyl compound—a small methane-related molecule. Once the bricks are locked into their assigned spots on the strand, researchers select which bricks to methylate, with the presence or absence of the modification standing in for binary values of 0 or 1. The information can then be deciphered using nanopore sequencers to detect whether a brick has been methylated. In theory, the new method is simple enough to be carried out without detailed knowledge of how to manipulate DNA.

The storage capacity of each DNA strand caps off at roughly 70 bits. For larger files, researchers splintered data into multiple strands identified by unique barcodes encoded in the bricks. The strands were then read simultaneously and sequenced according to their barcodes. With this technique, researchers encoded the image of a tiger rubbing from the Han dynasty, troubleshooting the encoding process until the image came back with no errors. The same process worked for more complex images, like a photorealistic print of a panda.

Page 82 of 2,813First7980818283848586Last