Menu

Blog

Archive for the ‘chemistry’ category: Page 102

Oct 11, 2023

The Untold Story of How The 2023 Nobel Prize in Chemistry Made Its Way Into Modern QLED Screens

Posted by in categories: biotech/medical, chemistry, quantum physics

The first people to make and use quantum dots were glassmakers. Working thousands of years ago, they realized that the same chemical mixture could turn glass into different colors, depending on how they heated it.

This year’s Nobel Prize in Chemistry honors three scientists who, along with their colleagues, students, and staff, figured out why the ancient glassmakers’ methods worked — and how to control them much more precisely. During the waning days of the Cold War, Alexei Ekimov and Louis Brus, working in separate labs on opposite sides of the Iron Curtain, both discovered the same thing: that tiny crystals (just millionths of a millimeter wide) act very differently than larger pieces of the exact same material. These tiny, weird crystals are called quantum dots, and just a few years after the Berlin Wall fell, Moungi Bawendi figured out how to mass-produce them.

That changed everything. Quantum dots are crystals so small that they follow different rules of physics than the materials we’re used to. Today, these tiny materials help surgeons map different types of cells in the body, paint vivid color images on QLED screens, and give LED lights a warmer glow.

Oct 11, 2023

Alternative method cuts time for computer simulation of absorption spectrum from days to hour

Posted by in categories: chemistry, particle physics, quantum physics, supercomputing

Absorption spectroscopy is an analytical chemistry tool that can determine if a particular substance is present in a sample by measuring the intensity of the light absorbed as a function of wavelength. Measuring the absorbance of an atom or molecule can provide important information about electronic structure, quantum state, sample concentration, phase changes or composition changes, among other variables, including interaction with other molecules and possible technological applications.

Molecules with a high probability of simultaneously absorbing two photons of low-energy light have a wide array of applications: in molecular probes for , as a substrate for data storage in dense three-dimensional structures, or as vectors in medicinal treatments, for example.

Studying the phenomenon by means of direct experimentation is difficult, however, and computer simulation usually complements spectroscopic characterization. Simulation also provides a microscopic view that is hard to obtain in experiments. The problem is that simulations involving relatively require several days of processing by supercomputers or months by conventional computers.

Oct 11, 2023

Morphogenesis of self-assembling microelectronic modules could yield sustainable living technology

Posted by in categories: biotech/medical, chemistry, mobile phones, robotics/AI

It is now apparent that the mass-produced artifacts of technology in our increasingly densely populated world—whether electronic devices, cars, batteries, phones, household appliances, or industrial robots—are increasingly at odds with the sustainable bounded ecosystems achieved by living organisms based on cells over millions of years.

Cells provide organisms with soft and sustainable environmental interactions with complete recycling of material components, except in a few notable cases like the creation of oxygen in the atmosphere, and of the fossil fuel reserves of oil and coal (as a result of missing biocatalysts).

However, the fantastic information content of biological cells (gigabits of information in DNA alone) and the complexities of protein biochemistry for metabolism seem to place a cellular approach well beyond the current capabilities of technology, and prevent the development of intrinsically sustainable technology.

Oct 11, 2023

Toxicologists reveal popular weed killer may harm teenage brains

Posted by in categories: biotech/medical, chemistry, education, food, health, neuroscience

Of course, this study was performed on a relatively small group of individuals in an agricultural community, which is not the environment that most American teenagers grow up in. These links may also be due to some other confounding factors, like spending more time on the farm than in formal education. However, these results are still striking and important to consider for young people in farming communities (and non-farming communities) around the world.

“Many chronic diseases and mental-health disorders in adolescents and young adults have increased over the last two decades worldwide, and exposure to neurotoxic contaminants in the environment could explain a part of this increase,” senior author Jose Ricardo Suarez, an associate professor in the Herbert Wertheim School of Public Health, said in a statement.

“Hundreds of new chemicals are released into the market each year, and more than 80,000 chemicals are registered for use today,” Suarez added. “Sadly, very little is known about the safety and long-term effects on humans for most of these chemicals. Additional research is needed to truly understand the impact.”

Oct 11, 2023

Beyond the periodic table: Superheavy elements and ultradense asteroids

Posted by in categories: chemistry, physics, space

Some asteroids have measured densities higher than those of any elements known to exist on Earth. This suggests that they are at least partly composed of unknown types of “ultradense” matter that cannot be studied by conventional physics.

Jan Rafelski and his team at the Department of Physics, The University of Arizona, Tucson, U.S., suggest that this could consist of superheavy elements with atomic number (Z) higher than the limit of the current periodic table.

They modeled the properties of such elements using the Thomas-Fermi model of atomic structure, concentrating particularly on a proposed “island of nuclear stability” at and around Z=164 and extending their method further to include more exotic types of ultra-dense material. This work has now been published in The European Physical Journal Plus.

Oct 10, 2023

Is the reversal of cellular aging possible through chemical means?

Posted by in categories: biotech/medical, chemistry, genetics, life extension

This is a bit technical. “nucleocytoplasmic compartmentalization assay”, Yeah buddy.


Life is dependent on the preservation and storage of information. The genome and epigenome are the two central storehouses of information in eukaryotes, and although they work interdependently, they are fundamentally quite different. Genetic information is consistent across all body cells throughout the life of an individual while epigenetic information varies between cells as well as changes over time and as per environment.

Researchers have identified several hallmarks of aging such as epigenetic alterations, genomic instability, cellular senescence, telomere attrition, mitochondrial dysfunction, and others [1]. These are known to play a role in the dysfunction and deterioration of cells with age. David Sinclair and other researchers have previously indicated that loss of epigenetic information can cause changes in gene expression, leading to cellular identity loss. Previous studies in mice have also shown that cell injuries such as cell crushing and DNA double-strand breaks can promote loss of epigenetic information which can accelerate aging along with age-related diseases [2].

Continue reading “Is the reversal of cellular aging possible through chemical means?” »

Oct 9, 2023

Chasing interactions between bacteria provide insights into collective behavior

Posted by in categories: chemistry, physics

A new model demonstrates that chasing interactions can induce dynamical patterns in the organization of bacterial species. Structural patterns can be created due to the chasing interactions between two bacterial species.

In the new model, scientists from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) describe how on the individual level can result in a global of . Their findings provide insights into general mechanisms of collective behavior. The findings are published in the journal Physical Review Letters.

In a recent study, scientists from the department Living Matter Physics at MPI-DS developed a model describing communication pathways in . Bacteria show an overall organizational pattern by sensing the concentration of chemicals in their environment and adapting their motion.

Oct 9, 2023

Common Plastic Additive Linked to Autism And ADHD, Scientists Discover

Posted by in categories: biotech/medical, chemistry, food, health, neuroscience

The number of kids being diagnosed with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) has risen sharply in recent decades, and a new study points to the common plastic additive bisphenol A (BPA) as a potential reason why.

BPA is used in a lot of plastics and plastic production processes, and can also be found inside food and drink cans. However, previous research has also linked it to health issues involving hormone disruption, including breast cancer and infertility.

In this new study, researchers from Rowan University and Rutgers University in the US looked at three groups of children: 66 with autism, 46 with ADHD, and 37 neurotypical kids. In particular, they analyzed the process of glucuronidation, a chemical process the body uses to clear out toxins within the blood through urine.

Oct 9, 2023

Chemistry Nobel Prize: Quantum Rules Provide Controllable Colors

Posted by in categories: chemistry, particle physics, quantum physics

This year’s Nobel Prize in Chemistry recognizes the development of quantum dots, particles whose size controls their color, making them useful for technologies such as displays.

Oct 8, 2023

Researchers catch protons in the act of dissociation with ultrafast ‘electron camera’

Posted by in categories: biological, chemistry, particle physics

Scientists have caught fast-moving hydrogen atoms—the keys to countless biological and chemical reactions—in action.

A team led by researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University used ultrafast electron diffraction (UED) to record the motion of hydrogen atoms within ammonia molecules. Others had theorized they could track hydrogen atoms with electron diffraction, but until now nobody had done the experiment successfully.

The results, published in Physical Review Letters, leverage the strengths of high-energy Megaelectronvolt (MeV) electrons for studying hydrogen atoms and proton transfers, in which the singular proton that makes up the nucleus of a hydrogen atom moves from one molecule to another.