Menu

Blog

Archive for the ‘chemistry’ category: Page 127

May 24, 2023

Designing synthetic receptors for precise cell control

Posted by in categories: biological, chemistry, computing, engineering

Biosensors are artificial molecular complexes designed to detect the presence of target chemicals or even biomolecules. Consequently, biosensors have become important in diagnostics and synthetic cell biology. However, typical methods for engineering biosensors focus on optimizing the interactions between static binding surfaces, and current biosensor designs can only recognize structurally well-defined molecules, which can be too rigid for “real-life” biology.

“We developed a novel computational approach for designing protein-peptide ligand binding and applied it to engineer cell-surface chemotactic receptors that reprogrammed cell migration,” says EPFL professor Patrick Barth. “We think that our work could broadly impact the design of protein binding and cell engineering applications.”

The new biosensors developed by Barth’s group can sense flexible compounds and trigger complex cellular responses, which open up new possibilities for biosensor applications. The researchers created a , which is a computer-based system, for designing protein complexes that can change their shape and function dynamically—as opposed to the conventional static approaches. The framework can look at previously unexplored protein sequences to come up with new ways for the protein’s groups to be activated, even in ways that are different to their natural function.

May 23, 2023

Nanoscale 3D Printing Allows Scientists To Print Materials on Atomic Level and Provides Numerous Applications in Electrochemistry

Posted by in categories: 3D printing, chemistry, nanotechnology

A nanoprinting technique developed by a chemist allows 3D printing of materials atom by atom and opens up various opportunities in electrochemistry. Read the article to find out more.

May 23, 2023

Breakthrough Bio-Ingenuity Banishes Cancer-Causing ‘Forever Chemical’ Found In Drinking Water

Posted by in categories: biotech/medical, chemistry

The detectives working in Allonnia’s labs have discovered naturally occuring bacterium with an affinity to derive their energy from 1,4-dioxane.

May 20, 2023

Quantum chemistry protects against macular degeneration

Posted by in categories: chemistry, quantum physics

(Credit: Perchek Industrie/Unsplash)

Age-related macular degeneration is the leading cause of vision loss in Western countries. The condition, a deterioration of central vision, begins when droplets of lipids and proteins called lipofuscin accumulate in the retina and damage cells.

May 19, 2023

Quantum Biology Could Revolutionize Our Understanding of How Life Works

Posted by in categories: biotech/medical, chemistry, genetics, mobile phones, nanotechnology, quantum physics, wearables

In my work, I build instruments to study and control the quantum properties of small things like electrons. In the same way that electrons have mass and charge, they also have a quantum property called spin. Spin defines how the electrons interact with a magnetic field, in the same way that charge defines how electrons interact with an electric field. The quantum experiments I have been building since graduate school, and now in my own lab, aim to apply tailored magnetic fields to change the spins of particular electrons.

Research has demonstrated that many physiological processes are influenced by weak magnetic fields. These processes include stem cell development and maturation, cell proliferation rates, genetic material repair, and countless others. These physiological responses to magnetic fields are consistent with chemical reactions that depend on the spin of particular electrons within molecules. Applying a weak magnetic field to change electron spins can thus effectively control a chemical reaction’s final products, with important physiological consequences.

Currently, a lack of understanding of how such processes work at the nanoscale level prevents researchers from determining exactly what strength and frequency of magnetic fields cause specific chemical reactions in cells. Current cell phone, wearable, and miniaturization technologies are already sufficient to produce tailored, weak magnetic fields that change physiology, both for good and for bad. The missing piece of the puzzle is, hence, a “deterministic codebook” of how to map quantum causes to physiological outcomes.

May 18, 2023

Webb telescope spots signs of universe’s biggest stars

Posted by in categories: chemistry, space

The James Webb Space Telescope has helped astronomers detect the first chemical signs of supermassive stars, “celestial monsters” blazing with the brightness of millions of Suns in the early universe.

So far, the largest stars observed anywhere have a mass of around 300 times that of our Sun.

But the supermassive star described in a new study has an estimated mass of 5,000 to 10,000 Suns.

May 18, 2023

This rechargeable battery is meant to be eaten

Posted by in categories: chemistry, food

A team of researchers at the Italian Institute of Technology recently unveiled what is being billed as the world’s first fully rechargeable, edible battery. As detailed in a paper published with Advanced Materials, the new device utilizes riboflavin (often found in shiitake mushrooms) as its anode and quercetin (seen in capers) as the cathode. Activated charcoal amplified the electrical conductivity alongside a water-based electrolyte. Nori seaweed—most often seen in sushi—served as the short circuit prevention separator, while beeswax-encased electrodes and food-grade gold foil contacts also contributed to the design.


The battery relies on chemical components often found in shiitake mushrooms, capers, and seaweed—and may come in handy for children’s toys.

May 17, 2023

Could We Find Alien Spacecraft using Gravitational Waves?

Posted by in categories: alien life, chemistry, physics

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Continue reading “Could We Find Alien Spacecraft using Gravitational Waves?” »

May 16, 2023

Engineering graphene-based quantum circuits with atomic precision

Posted by in categories: biological, chemistry, engineering, nanotechnology, particle physics, quantum physics, sustainability

😗😁


Imagine having a building made of stacks of bricks connected by adaptable bridges. You pull a knob that modifies the bridges and the building changes functionality. Wouldn’t it be great?

A team of researchers led by Prof. Aitor Mugarza, from the Catalan Institute of Nanoscience and Nanotechnology (ICN2) and ICREA, together with Prof. Diego Peña from the Center for Research in Biological Chemistry and Molecular Materials of the University of Santiago de Campostela (CiQUS-USC), Dr. Cesar Moreno, formerly a member of ICN2’s team and currently a researcher at the University of Cantabria, and Dr. Aran Garcia-Lekue, from the Donostia International Physics Center (DIPC) and Ikerbasque Foundation, has done something analogous, but at the single-atom scale, with the aim of synthesizing new carbon-based materials with tunable properties.

Continue reading “Engineering graphene-based quantum circuits with atomic precision” »

May 16, 2023

Artificial intelligence identifies anti-aging drug candidates targeting ‘zombie’ cells

Posted by in categories: bioengineering, biotech/medical, chemistry, life extension, robotics/AI

A new publication in the May issue of Nature Aging by researchers from Integrated Biosciences, a biotechnology company combining synthetic biology and machine learning to target aging, demonstrates the power of artificial intelligence (AI) to discover novel senolytic compounds, a class of small molecules under intense study for their ability to suppress age-related processes such as fibrosis, inflammation and cancer.

The paper, “Discovering small-molecule senolytics with ,” authored in collaboration with researchers from the Massachusetts Institute of Technology (MIT) and the Broad Institute of MIT and Harvard, describes the AI-guided screening of more than 800,000 compounds to reveal three with comparable efficacy and superior medicinal chemistry properties than those of senolytics currently under investigation.

“This research result is a for both longevity research and the application of artificial intelligence to ,” said Felix Wong, Ph.D., co-founder of Integrated Biosciences and first author of the publication. “These data demonstrate that we can explore chemical space in silico and emerge with multiple candidate anti-aging compounds that are more likely to succeed in the clinic, compared to even the most promising examples of their kind being studied today.”