Toggle light / dark theme

The James Webb Space Telescope has detected the earliest-known carbon dust in a galaxy ever.

Using the powerful space telescope, a team of astronomers spotted signs of the element that forms the backbone of all life in ten different galaxies that existed as early as 1 billion years after the Big Bang.

The detection of carbon dust so soon after the Big Bang could shake up theories surrounding the chemical evolution of the universe. This is because the processes that create and disperse heavier elements like this should take longer to build up in galaxies than the age of these young galaxies at the time the James Webb Space Telescope (JWST) sees them.

What happens when humans begin combining biology with technology, harnessing the power to recode life itself.

What does the future of biotechnology look like? How will humans program biology to create organ farm technology and bio-robots. And what happens when companies begin investing in advanced bio-printing, artificial wombs, and cybernetic prosthetic limbs.

Other topic include: bioengineered food and farming, bio-printing in space, new age living bioarchitecture (eco concrete inspired by coral reefs), bioengineered bioluminescence, cyberpunks and biopunks who experiment underground — creating new age food and pets, the future of bionics, corporations owning bionic limbs, the multi-trillion dollar industry of bio-robots, and bioengineered humans with super powers (Neo-Humans).

As well as the future of biomedical engineering, biochemistry, and biodiversity.
_______

Created by: Jacob.
Narration by: Alexander Masters (www.alexander-masters.com)

Modern Science Fiction.

According to scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), a bifacial perovskite solar cell holds the potential to produce higher energy yields at lower overall costs.

The bifacial solar cell captures direct sunlight on the front and reflected sunlight on the back. As a result, this type of device can outperform its monofacial counterparts, according to the new study.

“This perovskite cell can operate very effectively from either side,” said Kai Zhu, a senior scientist in the Chemistry and Nanoscience Center at NREL and lead author of a new paper.

Rice University engineers can turn sunlight into hydrogen with record-breaking efficiency thanks to a device that combines next-generation halide perovskite semiconductors with electrocatalysts in a single, durable, cost-effective and scalable device.

The new technology is a significant step forward for and could serve as a platform for a wide range of chemical reactions that use solar-harvested electricity to convert feedstocks into fuels.

The lab of chemical and biomolecular engineer Aditya Mohite built the integrated photoreactor using an anticorrosion barrier that insulates the from water without impeding the transfer of electrons. According to a study published in Nature Communications, the device achieved a 20.8% solar-to-hydrogen conversion efficiency.

A team of researchers from the Instituto de Carboquímica of the Spanish National Research Council (CSIC) has made a remarkable step forward in the development of efficient and sustainable electronic devices. They have found a special combination of two extraordinary nanomaterials that successfully results in a new hybrid product capable of turning light into electricity, and vice-versa, faster than conventional materials.

The research is published in the journal Chemistry of Materials.

This consists of a one-dimensional conductive polymer called polythiophene, ingeniously integrated with a two-dimensional derivative of graphene known as graphene oxide. The unique features exhibited by this hybrid material hold incredible promise for improving the efficiency of optoelectronic devices, such as smart devices screens, and solar panels, among others.

A researcher has used the technique of chemical mapping to study the spiral arms of our home galaxy: the Milky Way. According to Keith Hawkins, assistant professor at The University of Texas at Austin, chemical cartography might help us better grasp the structure and evolution of our galaxy.

“Much like the early explorers, who created better and better maps of our world, we are now creating better and better maps of the Milky Way,” mentioned Hawkins in an official release.


NASA/JPL-Caltech.

According to Keith Hawkins, assistant professor at The University of Texas at Austin, chemical cartography might help us better grasp the structure and evolution of our galaxy.

Built using inexpensive semiconductors, the device packs all components to make hydrogen and can be scaled.

A research team led by Aditya Mohite, a professor of chemical and biomolecular engineering at Rice University in the US, has designed a device that can use sunlight to generate hydrogen, with a record efficiency of 20.8 percent, a press release said.

Hydrogen is being touted as the future of clean energy due to its high energy density that could be deployed even to fly large planes. However, the process of generating hydrogen is currently heavily dependent on fossil fuels. For hydrogen to herald a new future in clean energy, it needs to be produced sustainably and without carbon emissions.

One of the central challenges for synthetic chemists is to impose control over free radicals. Highly reactive molecules with an unpaired electron, free radicals, may be familiar to you; these are the type of molecules we take antioxidant supplements for, in an effort to tame oxidative stress.

In the world of synthetic , however, hold a lot of promise.

“Free chemistry is very useful for the synthesis of both bioactive small molecules and everyday polymers,” said UC Santa Barbara chemistry professor Yang Yang, an author of a paper on the matter that appears in Nature Catalysis. “However, imposing stereocontrol over free-radical mediated reactions has eluded the asymmetric catalysis community for decades. We’re trying to develop biocatalytic strategies to further push the boundaries of free radical chemistry.”

A newly described type of chemistry in fungi is both surprisingly common and likely to involve highly reactive enzymes, two traits that make the genes involved useful signposts pointing to a potential treasure trove of biological compounds with medical and chemical applications.

It was also nearly invisible to scientists until now.

In the last 15 years, the hunt for molecules from living organisms—many with promise as drugs, antimicrobial agents, chemical catalysts and even food additives—has relied on trained to search the DNA of bacteria, fungi and plants for genes that produce enzymes known to drive that result in interesting compounds.