Menu

Blog

Archive for the ‘chemistry’ category: Page 168

Dec 1, 2022

Lab-grown adrenal glands could help treat hormone-related conditions

Posted by in categories: biotech/medical, chemistry

Functional adrenal glands have been grown in the lab by coaxing a type of stem cell to develop in a certain way by constantly tweaking the mix of chemicals they are bathed in.

Nov 30, 2022

20 Times More Intense: New Material Will Help Improve Phone and Television Displays

Posted by in categories: chemistry, computing, mobile phones, physics

Scientists have created, synthesized, and analyzed a new class of fluorophores, which are luminous chemical compounds. These are the new bullet systems based on cyanopyrazine. According to research, the inclusion of cyanogroup compounds in fluorophores considerably boosts the efficiency of organic light-emitting diodes (OLED). This indicates they can be utilized to develop new materials to improve the brightness of smartphone, computer, and television screens. The researchers’ findings were recently published in the journal Dyes and Pigments.

The research was led by Egor Verbitskiy, the director of the Postovsky Institute of Organic Synthesis Ural Branch of RAS and a member of the Laboratory of Medical Chemistry and Advanced Organic Materials at the Ural Federal University. He states that physicists were aware that introducing cyanogroups to fluorophores can enhance the OLEDs’ properties and overall efficiency.

Nov 29, 2022

New Insights into the Chemical Composition of Ayahuasca

Posted by in category: chemistry

Ayahuasca is a psychedelic beverage originally from the Amazon rainforest used in different shamanic settings for medicinal, spiritual, and cultural purposes. It is prepared by boiling in water an admixture of the Amazonian vine Banisteriopsis caapi, which is a source of β-carboline alkaloids, with plants containing N, N-dimethyltryptamine, usually Psychotria viridis. While previous studies have focused on the detection and quantification of the alkaloids present in the drink, less attention has been given to other nonalkaloid components or the composition of the solids suspended in the beverage, which may also affect its psychoactive properties. In this study, we used nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to study the composition of ayahuasca samples, to determine their alkaloid qualitative and quantitative profiles, as well as other major soluble and nonsoluble components. For the first time, fructose was detected as a major component of the samples, while harmine (a β-carboline previously described as an abundant alkaloid in ayahuasca) was found to be present in the solids suspended in the beverage. In addition, N, N-dimethyltryptamine (DMT), harmine, tetrahydroharmine, harmaline, and harmol were identified as the major alkaloids present in extracts of all samples. Finally, a novel, easy, and fast method using quantitative NMR was developed and validated to simultaneously quantify the content of these alkaloids found in each ayahuasca sample.

Ayahuasca, commonly translated from the Quechua language as “vine of the spirits” or “vine of the dead”, is a psychedelic beverage originally from the Amazon rainforest used in different shamanic settings for a variety of medicinal, spiritual, and cultural purposes.1 It is prepared by boiling in water an admixture of the vine Banisteriopsis caapi, which is a source of β-carboline alkaloids, and other plants containing N, N-dimethyltryptamine (DMT), usually Psychotria viridis ( Figure Figure1 1 ) or Diplopterys cabrerana, (where the preparation name is usually referred to as yagé).2.

Nov 29, 2022

Seemingly Impossible: Nanostructure Compresses Light 10,000 Times Thinner Than a Human Hair

Posted by in categories: biotech/medical, chemistry, nanotechnology

Until recently, physicists widely believed that it was impossible to compress light below the so-called diffraction limit, except when utilizing metal nanoparticles, which also absorb light. As a result, it seemed to be impossible to compress light strongly in dielectric materials like silicon, which are essential for information technologies and had the significant advantage of not absorbing light. Interestingly, it was theoretically shown that the diffraction limit does not apply to dielectrics back in 2006. However, no one has been able to demonstrate this in the actual world due to the fact that it requires such complex nanotechnology that no one has yet been able to create the required dielectric nanostructures.

A research team from the Technical University of Denmark has created a device known as a “dielectric nanocavity” that successfully concentrates light in a volume 12 times smaller than the diffraction limit. The finding is groundbreaking in optical research and was recently published in the journal Nature Communications.

Nature Communications is a peer-reviewed, open access, multidisciplinary, scientific journal published by Nature Research. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Nov 29, 2022

Four-million-mile battery is now a reality

Posted by in categories: chemistry, sustainability, transportation

Dahn, a world-renowned battery scientist and NSERC/Tesla Canada Chair, presented the exciting news during his keynote presentation (titled: More than a million miles and a century of life) at the international battery seminar (IBS) held 28–31 March 2022 in Orlando, Florida.

The term “Million Mile” battery first came to life after Dahn’s 2019 open access publication in Journal of The Electrochemical Society (JES) stating “we conclude that cells of this type should be able to power an electric vehicle for over 1.6 million kilometers (1 million miles) and last at least two decades in grid storage”.

Nov 29, 2022

A crystal shape conundrum is finally solved

Posted by in categories: chemistry, materials

A crystal’s shape is determined by its inherent chemistry, a characteristic that ultimately determines its final form from the most basic of details. But sometimes the lack of symmetry in a crystal makes the surface energies of its facets unknowable, confounding any theoretical prediction of its shape.

Theorists at Rice University say they’ve found a way around this conundrum by assigning arbitrary latent energies to its surfaces or, in the case of two-dimensional materials, its edges.

Yes, it seems like cheating, but in the same way a magician finds a select card in a deck by narrowing the possibilities, a little algebraic sleight-of-hand goes a long way to solve the problem of predicting a crystal’s shape.

Nov 28, 2022

Highly integrated watch for noninvasive continual glucose monitoring

Posted by in categories: biotech/medical, chemistry, mobile phones

This article reports a highly integrated watch for noninvasive continual blood glucose monitoring. The watch employs a Nafion-coated flexible electrochemical sensor patch fixed on the watchband to obtain interstitial fluid (ISF) transdermally at the wrist. This reverse iontophoresis-based extraction method eliminates the pain and inconvenience that traditional fingerstick blood tests pose in diabetic patients’ lives, making continual blood glucose monitoring practical and easy. All electronic modules, including a rechargeable power source and other modules for signal processing and wireless transmission, are integrated onto a watch face-sized printed circuit board (PCB), enabling comfortable wearing of this continual glucose monitor. Real-time blood glucose levels are displayed on the LED screen of the watch and can also be checked with the smartphone user interface.

Nov 28, 2022

Researchers publish 31,618 molecules with potential for energy storage in batteries

Posted by in categories: chemistry, information science, robotics/AI, supercomputing

Scientists from the Dutch Institute for Fundamental Energy Research (DIFFER) have created a database of 31,618 molecules that could potentially be used in future redox-flow batteries. These batteries hold great promise for energy storage. Among other things, the researchers used artificial intelligence and supercomputers to identify the molecules’ properties. Today, they publish their findings in the journal Scientific Data.

In recent years, chemists have designed hundreds of molecules that could potentially be useful in flow batteries for energy storage. It would be wonderful, researchers from DIFFER in Eindhoven (the Netherlands) imagined, if the properties of these molecules were quickly and easily accessible in a database. The problem, however, is that for many molecules the properties are not known. Examples of molecular properties are redox potential and water solubility. Those are important since they are related to the power generation capability and energy density of redox flow batteries.

To find out the still-unknown properties of molecules, the researchers performed four steps. First, they used a and smart algorithms to create thousands of virtual variants of two types of molecules. These molecule families, the quinones and aza aromatics, are good at reversibly accepting and donating electrons. That is important for batteries. The researchers fed the computer with backbone structures of 24 quinones and 28 aza-aromatics plus five different chemically relevant side groups. From that, the computer created 31,618 different molecules.

Nov 28, 2022

Chiral orbit currents create new quantum state

Posted by in categories: chemistry, computing, particle physics, quantum physics

Physicists have discovered a new quantum state in a material with the chemical formula Mn3SiTe6. The new state forms due to long-theorized but never previously observed internal currents that flow in loops around the material’s honeycomb-like structure. According to its discoverers, this new state could have applications for quantum sensors and memory storage devices for quantum computers.

Mn3SiTe6 is a ferrimagnet, meaning that its component atoms have opposing but unequal magnetic moments. It usually behaves like an insulator, but when physicists led by Gang Cao of the University of Colorado, Boulder, US, exposed it to a magnetic field applied along a certain direction, they found that it became dramatically more conducting – almost like it had morphed from being a rubber to a metal.

This effect, known as colossal magnetoresistance (CMR), is not itself new. Indeed, physicists have known about it since the 1950s, and it is now employed in computer disk drives and many other electronic devices, where it helps electric currents shuttle across along distinct trajectories in a controlled way.

Nov 27, 2022

Photochemistry is confirmed on an exoplanet

Posted by in categories: chemistry, particle physics, space

The latest data improves our understanding of how clouds in “hot Jupiter” exoplanets like this might appear up close. They are likely to be broken up, rather than a single, uniform blanket over the planet.


Photochemistry is the result of light triggering chemical reactions. This process is fundamental to life on Earth: it makes ozone, for example, which protects us from harsh ultraviolet (UV) rays.

New observations of WASP-39 b, a Jupiter-sized planet orbiting a Sun-like star found 700 light years away, confirm the presence of a never-before-seen molecule in the atmosphere – sulfur dioxide – among other details.

Continue reading “Photochemistry is confirmed on an exoplanet” »