Menu

Blog

Archive for the ‘chemistry’ category: Page 2

Nov 17, 2024

A “Chemical ChatGPT” for New Medications

Posted by in categories: chemistry, robotics/AI

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model — a kind of ChatGPT for molecules. Following a training phase, the AI was able to exactly reproduce the chemical structures of compounds with known dual-target activity that may be particularly effective medications. The study has now been published in Cell Reports Physical Science.

Anyone who wants to delight their granny with a poem on her 90th birthday doesn’t need to be a poet nowadays: A short prompt in ChatGPT is all it takes, and within a few seconds the AI spits out a long list of words that rhyme with the birthday girl’s name. It can even produce a sonnet to go with it if you like.

Researchers at the University of Bonn have implemented a similar model in their study — known as a chemical language model. This does not, however, produce rhymes. Instead, the AI displays the structural formulas of chemical compounds that may have a particularly desirable property: They are able to bind to two different target proteins. In the organism, this means, for example, they can inhibit two enzymes at once.

Nov 16, 2024

The Secrets of Life’s Most Essential Molecule: Scientists Unravel Water’s Mysterious Anomalies

Posted by in categories: biotech/medical, chemistry, nanotechnology, neuroscience

Water, a molecule essential for life, exhibits unusual properties—referred to as anomalies—that define its behavior. Despite extensive study, many mysteries remain about the molecular mechanisms underlying these anomalies that make water unique. Deciphering and replicating this distinctive behavior across various temperature ranges remains a significant challenge for the scientific community.

Now, a study presents a new theoretical model capable of overcoming the limitations of previous methodologies to understand how water behaves in extreme conditions. The paper, featured on the cover of The Journal of Chemical Physics, is led by Giancarlo Franzese and Luis Enrique Coronas, from the Faculty of Physics and the Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB).

The study not only broadens our understanding of the physics of water, but also has implications for technology, biology and biomedicine, in particular for addressing the treatment of neurodegenerative diseases and the development of advanced biotechnologies.

Nov 16, 2024

Silver-silica composite catalyst inspired by geochemical cycling exhibits reversible local pH control

Posted by in category: chemistry

A research team led by Dr. Hyung-Suk Oh and Dr. Woong Hee Lee at the Clean Energy Research Center at Korea Institute of Science and Technology (KIST) has developed a silver-silica composite catalyst capable of reversible local pH control through a silica-hydroxide cycle, inspired by Earth’s natural cycles.

Nov 15, 2024

Neurotransmitter switching in early development predicts autism-related behaviors

Posted by in categories: chemistry, neuroscience

Scientists have found that a process called neurotransmitter switching—where neurons alter their chemical signals—plays a role in the development of autism-related traits.

Nov 14, 2024

IBM Launches Its Most Advanced Quantum Computers, Fueling New Scientific Value and Progress towards Quantum Advantage

Posted by in categories: chemistry, computing, information science, quantum physics

YORKTOWN HEIGHTS, N.Y., Nov. 13, 2024 /PRNewswire/ — Today at its inaugural IBM Quantum Developer Conference, IBM (NYSE: IBM) announced quantum hardware and software advancements to execute complex algorithms on IBM quantum computers with record levels of scale, speed, and accuracy.

IBM Quantum Heron, the company’s most performant quantum processor to-date and available in IBM’s global quantum data centers, can now leverage Qiskit to accurately run certain classes of quantum circuits with up to 5,000 two-qubit gate operations. Users can now use these capabilities to expand explorations in how quantum computers can tackle scientific problems across materials, chemistry, life sciences, high-energy physics, and more.

Nov 14, 2024

Origin of Life Breakthrough: New Research Shows Gamma Radiation Can Create Life’s Building Blocks From Simple Gases

Posted by in categories: chemistry, space travel

A research team reports in the journal Angewandte Chemie that gamma radiation can transform methane into a diverse range of products at room temperature, including hydrocarbons, oxygenated molecules, and amino acids. This reaction likely plays a significant role in the formation of complex organic molecules in the universe—and may even contribute to the origins of life. Additionally, it presents new opportunities for industrially converting methane into high-value products under mild conditions.

With these research results, the team led by Weixin Huang at the University of Science and Technology of China (Hefei) has contributed to our fundamental understanding of the early development of molecules in the universe.

“Gamma rays, high-energy photons commonly existing in cosmic rays and unstable isotope decay, provide external energy to drive chemical reactions of simple molecules in the icy mantles of interstellar dust and ice grains,” states Huang. “This can result in more complex organic molecules, presumably starting from methane (CH4), which is widely present throughout the interstellar medium.”

Nov 13, 2024

When muscles work out, they help neurons grow: Biochemical and physical effects of exercise could help heal nerves

Posted by in categories: biotech/medical, chemistry, health, neuroscience

This study explores how muscle contractions, such as those that occur during exercise, influence motor neurons—the cells responsible for controlling muscle movement.


There’s no doubt that exercise does a body good. Regular activity not only strengthens muscles but can bolster our bones, blood vessels, and immune system.

Now, MIT engineers have found that exercise can also have benefits at the level of individual neurons. They observed that when muscles contract during exercise, they release a soup of biochemical signals called myokines.

Continue reading “When muscles work out, they help neurons grow: Biochemical and physical effects of exercise could help heal nerves” »

Nov 13, 2024

Exercise Spurs Nerve Growth Through Biochemical and Physical Impact

Posted by in categories: biotech/medical, chemistry, health, neuroscience

Summary: Researchers found that exercise promotes neuron growth through both biochemical signals (myokines) and physical stretching. Muscle cells, when contracted, release myokines that boost neuron growth and maturity. Furthermore, neurons that were “exercised” through mechanical movement grew just as much as those exposed to myokines.

These findings reveal the dual role of exercise in stimulating nerves, offering hope for developing therapies targeting nerve repair and neurodegenerative diseases. This research opens new avenues in treating nerve damage through “exercise as medicine.”

Nov 12, 2024

Bioluminescent proteins made from scratch enable non-invasive, multi-functional biological imaging

Posted by in categories: biotech/medical, chemistry

Bioluminescence is the natural chemical process of light creation in some living creatures that makes fireflies flicker and some jellyfish glow. Scientists have long been interested in borrowing the secrets of these animals’ light-producing genes to create similar effects in vertebrates, for a variety of biomedical applications.

Nov 12, 2024

Team proposes new solar composition ratios that could reconcile longstanding questions

Posted by in categories: chemistry, particle physics, space

“Solar system formation models using the new solar composition successfully reproduce the compositions of large Kuiper Belt objects (KBOs) and carbonaceous chondrite meteorites, in light of the newly returned Ryugu and Bennu asteroid samples from JAXA’s Hayabusa-2 and NASA’s OSIRIS-REx missions.”

To make this discovery, the team combined new measurements of solar neutrinos and data about the solar wind composition from NASA’s Genesis mission, together with the abundance of water found in primitive meteorites that originated in the . They also used the densities of large KBOs such as Pluto and its moon Charon, as determined by NASA’s New Horizons mission.

“This work provides testable predictions for future helioseismology, solar neutrino and cosmochemical measurements, including future comet sample return missions,” Truong said.

Page 2 of 34112345678Last