Toggle light / dark theme

DOW will install advanced nuclear reactors at one of its Gulf Coast sites to provide low carbon power and process heat for its chemicals production.

Dow signed a letter of intent with reactor developer X-energy, and plans to buy a minority stake in the company. The plan is to deploy X-energy’s Xe-100 high-temperature gas-cooled reactor technology at one of Dow’s Gulf Coast complexes, with operations expected to begin by 2030.

“Advanced small modular nuclear technology is going to be a critical tool for Dow’s path to zero-carbon emissions,” said Dow CEO Jim Fitterling. “This is a great opportunity for Dow to lead our industry in carbon neutral manufacturing by deploying next-generation nuclear energy.”

Providing highly efficient chemical processes that are also sustainable has become a key requirement for customers of the chemicals sector. While this is easier to achieve in large-scale, continuous processes for portfolio products, reaching similar levels of sustainability in multi-stage syntheses of complex, custom-manufactured molecules remains a challenge.

One solution to this problem is hydrogenation. When operated properly and with the appropriate knowledge and expertise, this technology is able to deliver excellent yields at high selectivity, and the catalysts applied in the process can often be re-used or recycled.

The findings could help pave the way for greater use of machine learning in materials science, a field that still relies heavily on laboratory experimentation. Also, the technique of using machine learning to make predictions that are then checked in the lab could be adapted for discovery in other fields, such as chemistry and physics, say experts in materials science.

To understand why it’s a significant development, it’s worth looking at the traditional way new compounds are usually created, says Michael Titus, an assistant professor of materials engineering at Purdue University, who was not involved in the research. The process of tinkering in the lab is painstaking and inefficient.

Researchers from Northwestern University have made a significant advance in the way they produce exotic open-framework superlattices made of hollow metal nanoparticles.

Using tiny hollow particles termed metallic nanoframes and modifying them with appropriate sequences of DNA, the team found they could synthesize open-channel superlattices with pores ranging from 10 to 1,000 nanometers in size—sizes that have been difficult to access until now. This newfound control over porosity will enable researchers to use these colloidal crystals in molecular absorption and storage, separations, chemical sensing, catalysis and many optical applications.

The new study identifies 12 unique porous nanoparticle superlattices with control over symmetry, geometry and pore connectivity to highlight the generalizability of new design rules as a route to making novel materials.

Scientists have shown that they can detect SARS-CoV-2, the virus that causes COVID-19, in the air by using a nanotechnology-packed bubble that spills its chemical contents like a broken piñata when encountering the virus.

Such a could be positioned on a wall or ceiling, or in an air duct, where there’s constant air movement, to alert occupants immediately when even a trace level of the virus is present.

The heart of the nanotechnology is a , a composed of oils, fats and sometimes water with inner space that can be filled with air or another substance. Micelles are often used to deliver anticancer drugs in the body and are a staple in soaps and detergents. Almost everyone has encountered a micelle in the form of soap bubbles.

Carbenes are among the most adaptable building blocks in organic chemistry, but they may also be dangerously hot. Due to their explosivity in the lab, scientists often avoid using these very reactive molecules.

However, in a new study that was just published in the journal Science, researchers from The Ohio State University describe a new, safer method to turn these short-lived, high-energy molecules into much more stable ones.

“Carbenes have an incredible amount of energy in them,” said David Nagib, co-author of the study and a professor of chemistry and biochemistry at Ohio State. “The value of that is they can do chemistry that you just cannot do any other way.”

“Forever chemicals” have been identified in water systems that serve about 9.5 million people in just six states, according to a new analysis of state data by a congressional watchdog.

The Government Accountability Office (GAO) published a report this week saying that the toxic chemicals had been found in at least 18 percent of water systems in Illinois, Massachusetts, New Hampshire, New Jersey, Ohio and Vermont.

Aside from the open-sourced nature of the project, the possible widespread applications of the technology also makes it noteworthy. It could be a plausible alternative to mechanical traps, as well as chemicals that often damage the environment and target non-pest insect species. Not to mention, it’s cheaper (the paper notes that all devices cost not more than $250) and more compact than other current pest-controlling technologies.

Sign up for Motherboard’s daily newsletter for a regular dose of our original reporting, plus behind-the-scenes content about our biggest stories.

That being said, although the prototype is suitable for academic research, there’s a lot more to be done before it can be deployed on a larger scale. For example, the paper notes that a smaller laser point would be more effective at killing the roaches but is difficult to implement experimentally. The ability to precisely control which parts of the cockroach’s bodies were hit would also be helpful, the paper says.

A new discovery could be a game-changer for patients with type 2 diabetes. Researchers at the Diabetes, Obesity, and Metabolism Institute (DOMI) at the Icahn School of Medicine at Mount Sinai have discovered a therapeutic target for the preservation and regeneration of beta cells (β cells), the cells in the pancreas that produce and distribute insulin. The finding could also help millions of individuals throughout the globe by preventing insulin resistance. The study was recently published in the journal Nature Communications.

Nature Communications is a peer-reviewed, open access, multidisciplinary, scientific journal published by Nature Research. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.